Recursive Feature Elimination for Machine Learning-based Landslide Prediction Models

被引:4
|
作者
Munasinghe, Kusala [1 ]
Karunanayake, Piyumika [2 ]
机构
[1] Sri Lanka Technol Campus, Sch Engn & Technol, Padukka, Sri Lanka
[2] Gen Sir John Kotelawala Def Univ, Dept Elect Elect & Telecommun Engn, Ratmalana, Sri Lanka
关键词
Landslide prediction; machine learning; recursive feature elimination; SUSCEPTIBILITY;
D O I
10.1109/ICAIIC51459.2021.9415232
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a landslide prediction model which uses the recursive feature elimination method. which is one of the key feature selection methods in machine learning that s not tested yet for landslide prediction related applications. The model is tested with the landslide inventories of two landslide-prone areas. The results show that the proposed model achieves an average accuracy of 91.15% and a sensitivity of 83.4% predicting the possibility for a landslide. The findings of this research paper imply that recursive feature elimination can also he effective') used in landslide predictions since it achieves high accuracy.
引用
收藏
页码:126 / 129
页数:4
相关论文
共 50 条
  • [41] Discrete Space Deep Reinforcement Learning Algorithm Based on Support Vector Machine Recursive Feature Elimination
    Kim, Chayoung
    SYMMETRY-BASEL, 2024, 16 (08):
  • [42] Evaluation of different machine learning models and novel deep learning-based algorithm for landslide susceptibility mapping
    Tingyu Zhang
    Yanan Li
    Tao Wang
    Huanyuan Wang
    Tianqing Chen
    Zenghui Sun
    Dan Luo
    Chao Li
    Ling Han
    Geoscience Letters, 9
  • [43] Machine Learning-Based Feature Extraction and Selection
    Ruano-Ordas, David
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [44] Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models
    Li, Huajin
    Xu, Qiang
    He, Yusen
    Deng, Jiahao
    LANDSLIDES, 2018, 15 (10) : 2047 - 2059
  • [45] Large Margin Distribution Machine Recursive Feature Elimination
    Ou, Ge
    Wang, Yan
    Pang, Wei
    Coghill, George Macleod
    2017 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2017, : 1518 - 1523
  • [46] Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models
    Huajin Li
    Qiang Xu
    Yusen He
    Jiahao Deng
    Landslides, 2018, 15 : 2047 - 2059
  • [47] An Improved Machine Learning-Based Employees Attrition Prediction Framework with Emphasis on Feature Selection
    Najafi-Zangeneh, Saeed
    Shams-Gharneh, Naser
    Arjomandi-Nezhad, Ali
    Zolfani, Sarfaraz Hashemkhani
    MATHEMATICS, 2021, 9 (11)
  • [48] Nonlinear Prediction of Landslide Stability Based on Machine Learning
    Zhang T.
    Wu T.
    Wang L.
    Zhang Z.
    Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Journal of China University of Geosciences, 2023, 48 (05): : 1989 - 1999
  • [49] Correction: Evaluation of different machine learning models and novel deep learning-based algorithm for landslide susceptibility mapping
    Tingyu Zhang
    Yanan Li
    Tao Wang
    Huanyuan Wang
    Tianqing Chen
    Zenghui Sun
    Dan Luo
    Chao Li
    Ling Han
    Geoscience Letters, 10
  • [50] New machine learning-based prediction models for fracture energy of asphalt mixtures
    Majidifard, Hamed
    Jahangiri, Behnam
    Buttlar, William G.
    Alavi, Amir H.
    MEASUREMENT, 2019, 135 : 438 - 451