Ground state solutions for non-autonomous dynamical systems

被引:2
|
作者
Schechter, Martin [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
SUPERQUADRATIC HAMILTONIAN-SYSTEMS; MULTIPLE PERIODIC-SOLUTIONS; 2ND-ORDER SYSTEMS; EXISTENCE; INDEFINITE;
D O I
10.1063/1.4897443
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the existence of periodic solutions for a second order non-autonomous dynamical system. We allow both sublinear and superlinear problems. We obtain ground state solutions. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Non-autonomous difference equations and discrete dynamical systems
    Kloeden, Peter E.
    Poetzsche, C.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (02) : 129 - 130
  • [32] On the Continuity of the Topological Entropy of Non-autonomous Dynamical Systems
    Muentes Acevedo, Jeovanny de Jesus
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (01): : 89 - 106
  • [33] Weak stability of non-autonomous discrete dynamical systems
    Lan, Yaoyao
    Peris, Alfred
    TOPOLOGY AND ITS APPLICATIONS, 2018, 250 : 53 - 60
  • [34] Morse Decomposition of Attractors for Non-autonomous Dynamical Systems
    Caraballo, Tomas
    Jara, Juan C.
    Langa, Jose A.
    Liu, Zhenxin
    ADVANCED NONLINEAR STUDIES, 2013, 13 (02) : 309 - 329
  • [35] THE NUMBER OF PERIODIC SOLUTIONS OF NON-AUTONOMOUS SYSTEMS
    CRONIN, J
    DUKE MATHEMATICAL JOURNAL, 1960, 27 (02) : 183 - 193
  • [36] Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system
    Wenjing Bi
    Chunlei Tang
    Frontiers of Mathematics in China, 2020, 15 : 851 - 866
  • [37] The Baire Class of Topological Entropy of Non-Autonomous Dynamical Systems
    Astrelina, A. A.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2018, 73 (05) : 203 - 206
  • [38] Controlling coexisting attractors of a class of non-autonomous dynamical systems
    Zhang, Zhi
    Paez Chavez, Joseph
    Sieber, Jan
    Liu, Yang
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 431
  • [39] ON ω-LIMIT SETS AND ATTRACTION OF NON-AUTONOMOUS DISCRETE DYNAMICAL SYSTEMS
    Liu, Lei
    Chen, Bin
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (04) : 703 - 713
  • [40] Some criteria of chaos in non-autonomous discrete dynamical systems
    Shao, Hua
    Chen, Guanrong
    Shi, Yuming
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (03) : 295 - 308