Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response

被引:57
|
作者
Fan, YH [1 ]
Li, WT [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
discrete predator-prey model; functional response; permanence;
D O I
10.1016/j.jmaa.2004.02.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sufficient conditions are established for the permanence in a delayed discrete predator-prey model with Holling type III functional response: { N-1 (k + 1) = N-1 (k) exp {b(1)(k) - a(1)(k)N-1(k - [tau(1)]) - (alpha1(k)N1(k)N2(k))/(N12(k)+m2N22(k))}, N-2(k+1)=N-2(k)exp{-b(2)(k) + (alpha2(k)N1(k-[tau]))/(N12(k-[tau])+m2N22(k-[tau2])) }. Our investigation confirms that when the death rate of the predator is rather small as well as the intrinsic growth rate of the prey is relatively large, the species could coexist in the long run. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:357 / 374
页数:18
相关论文
共 50 条