Antioxidant response of cowpea co-inoculated with plant growth-promoting bacteria under salt stress

被引:53
|
作者
Santos, Alexandra de Andrade [1 ]
Gomes da Silveira, Joaquim Albenisio [2 ]
Bonifacio, Aureniuia [3 ]
Rodrigues, Artenisa Cerqueira [4 ]
Barreto Figueiredo, Marcia do Vale [5 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Agron, Recife, PE, Brazil
[2] Univ Fed Ceara, Dept Bioquim & Biol Mol, Fortaleza, Ceara, Brazil
[3] Univ Fed Piaui, Dept Biol, Teresina, PI, Brazil
[4] Univ Fed Piaui, Dept Solos & Engn Agr, Teresina, PI, Brazil
[5] IPA, Lab Biol Solo, Ave Gal San Martin 1371, BR-50761000 Recife, PE, Brazil
关键词
Plant-bacteria interactions; Reactive oxygen species; Salinity; SALINITY; TOLERANCE; PEROXIDASE; ASCORBATE; CATALASE; LEAVES; DAMAGE; ACID; SOIL;
D O I
10.1016/j.bjm.2017.12.003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Soil salinity is an important abiotic stress worldwide, and salt-induced oxidative stress can have detrimental effects on the biological nitrogen fixation. We hypothesized that co-inoculation of cowpea plants with Bradyrhizobium and plant growth-promoting bacteria would minimize the deleterious effects of salt stress via the induction of enzymatic and non-enzymatic antioxidative protection. To test our hypothesis, cowpea seeds were inoculated with Bradyrhizobium or co-inoculated with Bradyrhizobium and plant growth-promoting bacteria and then submitted to salt stress. Afterward, the cowpea nodules were collected, and the levels of hydrogen peroxide; lipid peroxidation; total, reduced and oxidized forms of ascorbate and glutathione; and superoxide dismutase, catalase and phenol peroxidase activities were evaluated. The sodium and potassium ion concentrations were measured in shoot samples. Cowpea plants did not present significant differences in sodium and potassium levels when grown under non-saline conditions, but sodium content was strongly increased under salt stress conditions. Under non-saline and salt stress conditions, plants co-inoculated with Bradyrhizobium and Actinomadura or co-inoculated with Bradyrhizobium and Paenibacillus graminis showed lower hydrogen peroxide content in their nodules, whereas lipid peroxidation was increased by 31% in plants that were subjected to salt stress. Furthermore, cowpea nodules co-inoculated with Bradyrhizobium and plant growth-promoting bacteria and exposed to salt stress displayed significant alterations in the total, reduced and oxidized forms of ascorbate and glutathione. Inoculation with Bradyrhizobium and plant growth-promoting bacteria induced increased superoxide dismutase, catalase and phenol peroxidase activities in the nodules of cowpea plants exposed to salt stress. The catalase activity in plants co-inoculated with Bradyrhizobium and Streptomyces was 55% greater than in plants inoculated with Bradyrhizobium alone, and this value was remarkably greater than that in the other treatments. These results reinforce the beneficial effects of plant growth-promoting bacteria on the antioxidant system that detoxifies reactive oxygen species. We concluded that the combination of Bradyrhizobium and plant growth-promoting bacteria induces positive responses for coping with salt-induced oxidative stress in cowpea nodules, mainly in plants co-inoculated with Bradyrhizobium and P. graminis or co-inoculated with Bradyrhizobium and Bacillus. (C) 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda.
引用
收藏
页码:513 / 521
页数:9
相关论文
共 50 条
  • [31] Physiological and biochemical traits in coriander affected by plant growth-promoting rhizobacteria under salt stress
    Rabiei, Zahra
    Hosseini, Seyyed Jaber
    Pirdashti, Hemmatollah
    Hazrati, Saeid
    HELIYON, 2020, 6 (10)
  • [32] Prospecting Plant Growth-Promoting Bacteria Isolated from the Rhizosphere of Sugarcane Under Drought Stress
    Leticia B. Pereira
    Gabriela S. Andrade
    Silvana P. Meneghin
    Renato Vicentini
    Laura M. M. Ottoboni
    Current Microbiology, 2019, 76 : 1345 - 1354
  • [33] Prospecting Plant Growth-Promoting Bacteria Isolated from the Rhizosphere of Sugarcane Under Drought Stress
    Pereira, Leticia B.
    Andrade, Gabriela S.
    Meneghin, Silvana P.
    Vicentini, Renato
    Ottoboni, Laura M. M.
    CURRENT MICROBIOLOGY, 2019, 76 (11) : 1345 - 1354
  • [34] Plant Growth-Promoting Bacteria Associated With Some Salt-Tolerant Plants
    Beitsayahi, Fatemeh
    Enayatizamir, Naeimeh
    Nejadsadeghi, Leila
    Nasernakhaei, Fatemeh
    JOURNAL OF BASIC MICROBIOLOGY, 2025, 65 (02)
  • [35] Response of Upland Rice (Oryza sativa L.) Inoculated with Non-Native Plant Growth-Promoting Bacteria
    Ouyabe, Michel
    Irie, Kenji
    Tanaka, Naoto
    Kikuno, Hidehiko
    Pachakkil, Babil
    Shiwachi, Hironobu
    AGRONOMY-BASEL, 2020, 10 (06):
  • [36] Growth response and heavy metals tolerance of Axonopus affinis, inoculated with plant growth-promoting rhizobacteria
    Labra Cardon, Daniela
    Montes Villafan, Silvano
    Rodriguez Tovar, Aida
    Perez Jimenez, Sandra
    Guerrero Zuniga, L. Angelica
    Amezcua Allieri, Myriam A.
    Perez, Nestor O.
    Rodriguez Dorantes, Angelica
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2010, 9 (51): : 8772 - 8782
  • [37] Interrelationship of Bradyrhizobium sp. and plant growth-promoting bacteria in cowpea: Survival and symbiotic performance
    Artenisa Cerqueira Rodrigues
    Jadson Emanuel Lopes Antunes
    Antônio Félix da Costa
    José de Paula Oliveira
    Marcia do Vale Barreto Figueiredo
    Journal of Microbiology, 2013, 51 : 49 - 55
  • [38] Enhanced drought tolerance in seedlings of Neotropical tree species inoculated with plant growth-promoting bacteria
    Tiepo, Angelica Nunes
    Hertel, Mariana Fernandes
    Rocha, Samela Santos
    Calzavara, Anderson Kikuchi
    Martinez De Oliveira, Andre Luiz
    Pimenta, Jose Antonio
    Oliveira, Halley Caixeta
    Bianchini, Edmilson
    Stolf-Moreira, Renata
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 130 : 277 - 288
  • [39] Isolation of Endophytic Salt-Tolerant Plant Growth-Promoting Rhizobacteria From Oryza sativa and Evaluation of Their Plant Growth-Promoting Traits Under Salinity Stress Condition
    Jhuma, Tania Akter
    Rafeya, Jannatul
    Sultana, Shahnaz
    Rahman, Mohammad Tariqur
    Karim, Muhammad Manjurul
    FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2021, 5
  • [40] Plant growth-promoting bacteria (PGPB) in horticulture
    Aparna B. Gunjal
    Bernard R. Glick
    Proceedings of the Indian National Science Academy, 2024, 90 : 1 - 11