Factorizations of skew braces

被引:29
|
作者
Jespers, E. [1 ]
Kubat, L. [1 ]
Van Antwerpen, A. [1 ]
Vendramin, L. [2 ,3 ,4 ]
机构
[1] Vrije Univ Brussel, Dept Math, Pl Laan 2, B-1050 Brussels, Belgium
[2] Univ Buenos Aires, IMAS, CONICET, Pabellon 1,Ciudad Univ,C1428EGA, Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Dept Matemat, FCEN, Pabellon 1,Ciudad Univ,C1428EGA, Buenos Aires, DF, Argentina
[4] NYU Shanghai, NYU ECNU Inst Math Sci, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R China
关键词
Primary; 16T25; Secondary; 81R50; YANG-BAXTER EQUATION; MULTIPERMUTATION SOLUTIONS; MATCHED PRODUCTS; RINGS;
D O I
10.1007/s00208-019-01909-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce strong left ideals of skew braces and prove that they produce non-trivial decomposition of set-theoretic solutions of the Yang-Baxter equation. We study factorization of skew left braces through strong left ideals and we prove analogs of Ito's theorem in the context of skew left braces. As a corollary, we obtain applications to the retractability problem of involutive non-degenerate solutions of the Yang-Baxter equation. Finally, we classify skew braces that contain no non-trivial proper characteristic ideals.
引用
收藏
页码:1649 / 1663
页数:15
相关论文
共 50 条