Regularized modal regression with data-dependent hypothesis spaces

被引:32
|
作者
Wang, Yingjie [1 ]
Chen, Hong [2 ]
Song, Biqin [2 ]
Li, Han [1 ]
机构
[1] Huazhong Agr Univ, Coll Informat, Wuhan 430070, Hubei, Peoples R China
[2] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Modal regression; data-dependent hypothesis spaces; kernel density estimation; generalization error; robustness;
D O I
10.1142/S0219691319500474
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Modal regression aims at learning the conditional mode function, which is different from the traditional least-squares for approximating the conditional mean function. Due to its robust to complex noise and outliers, modal regression has attracted increasing attention recently in statistics and machine learning community. However, most of the previous modal regression models are limited to learning framework with data-independent hypothesis spaces. Usually, the data-dependent hypothesis spaces can provide much flexibility and adaptivity for many learning problems. By employing data-dependent hypothesis spaces, we propose a new regularized modal regression and establish its generalization error analysis. Data experiments demonstrate the competitive performance of the proposed model over the related least-squares regression.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] A Low Complexity Data-Dependent Beamformer
    Synnevag, Johan-Fredrik
    Holm, Sverre
    Austeng, Andreas
    [J]. 2008 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4 AND APPENDIX, 2008, : 1084 - 1087
  • [22] Operator Precedence for Data-Dependent Grammars
    Afroozeh, Ali
    Izmaylova, Anastasia
    [J]. PEPM'16: PROCEEDINGS OF THE 2016 ACM SIGPLAN WORKSHOP ON PARTIAL EVALUATION AND PROGRAM MANIPULATION, 2016, : 13 - 24
  • [23] Semantics and Algorithms for Data-dependent Grammars
    Jim, Trevor
    Mandelbaum, Yitzhak
    Walker, David
    [J]. ACM SIGPLAN NOTICES, 2010, 45 (01) : 417 - 430
  • [24] Data-Dependent Sparsity for Subspace Clustering
    Xin, Bo
    Wang, Yizhou
    Gao, Wen
    Wipf, David
    [J]. CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,
  • [25] Rewritable Channels With Data-Dependent Noise
    Mittelholzer, Thomas
    Franceschini, Michele
    Lastras-Montano, Luis A.
    Elfadel, Ibrahim M.
    Sharma, Mayank
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-8, 2009, : 2644 - +
  • [26] Data-dependent jitter in serial communications
    Analui, B
    Buckwalter, JF
    Hajimiri, A
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (11) : 3388 - 3397
  • [27] Eigenvector Localization on Data-Dependent Graphs
    Cloninger, Alexander
    Czaja, Wojciech
    [J]. 2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 608 - 612
  • [28] Semantics and Algorithms for Data-dependent Grammars
    Jim, Trevor
    Mandelbaum, Yitzhak
    Walker, David
    [J]. POPL'10: PROCEEDINGS OF THE 37TH ANNUAL ACM SIGPLAN-SIGACT SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES, 2010, : 417 - 430
  • [29] PCA in Sparse Data-Dependent Noise
    Vaswani, Namrata
    Narayanamurthy, Praneeth
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 641 - 645
  • [30] A cipher based on data-dependent permutations
    Moldovyan, AA
    Moldovyan, NA
    [J]. JOURNAL OF CRYPTOLOGY, 2002, 15 (01) : 61 - 72