Potential direct single-star mass measurement

被引:32
|
作者
Ghosh, H
DePoy, DL
Gal-Yam, A
Gaudi, BS
Gould, A
Han, C
Lipkin, Y
Maoz, D
Ofek, EO
Park, BG
Pogge, RW
Salim, S
Abe, F
Bennett, DP
Bond, IA
Eguchi, S
Furuta, Y
Hearnshaw, JB
Kamiya, K
Kilmartin, PM
Kurata, Y
Masuda, K
Matsubara, Y
Muraki, Y
Noda, S
Okajima, K
Rattenbury, NJ
Sako, T
Sekiguchi, T
Sullivan, DJ
Sumi, T
Tristram, PJ
Yanagisawa, T
Yock, PCM
Udalski, A
Soszynski, I
Wyrzykowski, X
Kubiak, M
Szymanski, MK
Pietrzynski, G
Szewczyk, O
Zebrun, K
Albrow, MD
Beaulieu, JP
Caldwell, JAR
Cassan, A
Coutures, C
Dominik, M
Donatowicz, J
Fouqué, P
机构
[1] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA
[2] CALTECH, Dept Astron, Pasadena, CA 91025 USA
[3] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[4] Chungbuk Natl Univ, Dept Phys, Inst Basic Sci Res, Chonju 361763, South Korea
[5] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
[6] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel
[7] Korea Astron Obser, Taejon 305348, South Korea
[8] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[9] Nagoya Univ, Solarterr Environm Lab, Nagoya, Aichi 4648601, Japan
[10] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
[11] Univ Edinburgh, Astron Inst, Edinburgh EH9 3HJ, Midlothian, Scotland
[12] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand
[13] Natl Astron Observ Japan, Tokyo 1818588, Japan
[14] Univ Auckland, Dept Phys, Auckland, New Zealand
[15] Univ Victoria, Sch Chem & Phys Sci, Wellington, New Zealand
[16] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[17] Natl Aerosp Lab, Tokyo 1828522, Japan
[18] Univ Warsaw Observ, PL-00478 Warsaw, Poland
[19] Univ Concepcion, Dept Fis, Concepcion, Chile
[20] Univ Canterbury, Dept Phys & Astron, Christchurch 4800, New Zealand
[21] Inst Astrophys, F-75014 Paris, France
[22] Space Telescope Sci Inst, Baltimore, MD 21218 USA
[23] CEA Saclay, DSM DAPNIA, F-91191 Gif Sur Yvette, France
[24] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
[25] Vienna Univ Technol, Dept Comp, A-1060 Vienna, Austria
[26] Observ Midi Pyrenees, UMR 5572, F-31400 Toulouse, France
[27] Univ Tasmania, Dept Phys, Hobart, Tas 7001, Australia
[28] Astronom Observ, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[29] Univ Potsdam, D-14469 Potsdam, Germany
[30] Perth Observ, Perth, WA 6076, Australia
[31] S African Astron Observ, ZA-7935 Cape Town, South Africa
来源
ASTROPHYSICAL JOURNAL | 2004年 / 615卷 / 01期
关键词
astrometry; gravitational lensing; stars : fundamental parameters;
D O I
10.1086/423665
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze the light curve of the microlensing event OGLE-2003-BLG-175/MOA-2003-BLG-45 and show that it has two properties that, when combined with future high-resolution astrometry, could lead to a direct, accurate measurement of the lens mass. First, the light curve shows clear signs of distortion due to the Earth's accelerated motion, which yields a measurement of the projected Einstein radius (r) over tilde (E). Second, from precise astrometric measurements, we show that the blended light in the event is coincident with the microlensed source to within about 15 mas. This argues strongly that this blended light is the lens and hence opens the possibility of directly measuring the lens-source relative proper motion mu(rel) and so the mass M=(c(2)/4G)mu(rel)t(E)(r) over tilde (E), where t(E) is the measured Einstein timescale. While the light-curve-based measurement of (r) over tildeE is, by itself, severely degenerate, we show that this degeneracy can be completely resolved by measuring the direction of proper motion mu(rel).
引用
收藏
页码:450 / 459
页数:10
相关论文
共 50 条
  • [21] Investigation on single-star stellar-inertial guidance principle using equivalent information compression theory
    Zhang HongBo
    Zheng Wei
    Wu Jie
    Tang GuoJian
    [J]. SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2009, 52 (10): : 2924 - 2929
  • [22] Binary Single-star Scattering. VII. Hard Binary Exchange Cross Sections for Arbitrary Mass Ratios: Numerical Results and Semianalytic Fits
    Heggie, D. C.
    Hut, P.
    McMillan, S. L. W.
    [J]. Astrophysical Journal, 467 (01):
  • [23] DIRECT MEASUREMENT OF IONIZATION PROBABILITY AND APPEARANCE POTENTIAL USING A MASS SPECTROMETER
    FOX, RE
    HICKAM, WM
    KJELDAAS, T
    GROVE, DJ
    [J]. PHYSICAL REVIEW, 1952, 85 (04): : 707 - 707
  • [24] Investigation on single-star stellar-inertial guidance principle using equivalent information compression theory
    HongBo Zhang
    Wei Zheng
    Jie Wu
    GuoJian Tang
    [J]. Science in China Series E: Technological Sciences, 2009, 52 : 2924 - 2929
  • [25] BINARY SINGLE-STAR SCATTERING .5. STEADY-STATE BINARY DISTRIBUTION IN A HOMOGENEOUS STATIC BACKGROUND OF SINGLE STARS
    GOODMAN, J
    HUT, P
    [J]. ASTROPHYSICAL JOURNAL, 1993, 403 (01): : 271 - 277
  • [26] The combination of ground-based astrometric compilation catalogues with the HIPPARCOS Catalogue - I. Single-star mode
    Wielen, R
    Lenhardt, H
    Schwan, H
    Dettbarn, C
    [J]. ASTRONOMY & ASTROPHYSICS, 1999, 347 (03) : 1046 - 1054
  • [27] DC Multibus based on a Single-Star Bridge Cells Modular Multilevel Cascade Converter for DC Smart Grids
    Mastromauro, Rosa A.
    Pugliese, Sante
    Ricchiuto, Domenico
    Stasi, Silvio
    Liserre, Marco
    [J]. 2015 INTERNATIONAL CONFERENCE ON CLEAN ELECTRICAL POWER (ICCEP), 2015, : 55 - 60
  • [28] DIRECT MEASUREMENT OF INTENSITY DISTRIBUTIONS IN STAR IMAGES
    NAISH, JM
    JONES, PG
    [J]. NATURE, 1954, 173 (4417) : 1241 - 1242
  • [29] Direct measurement of the mass of the mesotron
    Ringuet, LL
    Gorodetzky, S
    Nageotte, E
    Foy, RR
    [J]. PHYSICAL REVIEW, 1941, 59 (05): : 460 - 461
  • [30] Direct measurement of the neutrino mass
    Doe, Peter J.
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2012, 221 : 67 - 72