A multi-camera dataset for depth estimation in an indoor scenario

被引:9
|
作者
Marin, Giulio [1 ]
Agresti, Gianluca [1 ]
Minto, Ludovico [1 ]
Zanuttigh, Pietro [1 ]
机构
[1] Univ Padua, Padua, Italy
来源
DATA IN BRIEF | 2019年 / 27卷
关键词
Time-of-Flight; Stereo vision; Active stereo; Data fusion; Depth estimation;
D O I
10.1016/j.dib.2019.104619
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Time-of-Flight (ToF) sensors and stereo vision systems are two of the most diffused depth acquisition devices for commercial and industrial applications. They share complementary strengths and weaknesses. For this reason, the combination of data acquired from these devices can improve the final depth estimation accuracy. This paper introduces a dataset acquired with a multi-camera system composed by a Microsoft Kinect v2 ToF sensor, an Intel RealSense R200 active stereo sensor and a Stereolabs ZED passive stereo camera system. The acquired scenes include indoor settings with different external lighting conditions. The depth ground truth has been acquired for each scene of the dataset using a line laser. The data can be used for developing fusion and denoising algorithms for depth estimation and test with different lighting conditions. A subset of the data has already been used for the experimental evaluation of the work "Stereo and ToF Data Fusion by Learning from Synthetic Data". (c) 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:7
相关论文
共 50 条
  • [1] ACCURACY EVALUATION FOR A PRECISE INDOOR MULTI-CAMERA POSE ESTIMATION SYSTEM
    Goetz, C.
    Tuttas, S.
    Hoegner, L.
    Eder, K.
    Stilla, U.
    PIA11: PHOTOGRAMMETRIC IMAGE ANALYSIS, 2011, 2011, 38-3 (W22): : 97 - 102
  • [2] Multi-Camera Collaborative Depth Prediction via Consistent Structure Estimation
    Xu, Jialei
    Liu, Xianming
    Bai, Yuanchao
    Jiang, Junjun
    Wang, Kaixuan
    Chen, Xiaozhi
    Ji, Xiangyang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2730 - 2738
  • [3] Posture classification in a multi-camera indoor environment
    Cucchiara, R
    Prati, A
    Vezzani, R
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 1061 - 1064
  • [4] Multi-camera head pose estimation
    Munoz-Salinas, Rafael
    Yeguas-Bolivar, E.
    Saffiotti, A.
    Medina-Carnicer, R.
    MACHINE VISION AND APPLICATIONS, 2012, 23 (03) : 479 - 490
  • [5] WiseNET: An indoor multi-camera multi-space dataset with contextual information and annotations for people detection and tracking
    Marroquin, Roberto
    Dubois, Julien
    Nicolle, Christophe
    DATA IN BRIEF, 2019, 27
  • [6] Multi-camera head pose estimation
    Rafael Muñoz-Salinas
    E. Yeguas-Bolivar
    A. Saffiotti
    R. Medina-Carnicer
    Machine Vision and Applications, 2012, 23 : 479 - 490
  • [7] Pose Estimation for Multi-camera Systems
    Zhao, Chunhui
    Fan, Bin
    Hu, Jinwen
    Tian, Limin
    Zhang, Zhiyuan
    Li, Sijia
    Pan, Quan
    PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2017, : 533 - 538
  • [8] Pose estimation for multi-camera systems
    Frahm, JM
    Köser, K
    Koch, R
    PATTERN RECOGNITION, 2004, 3175 : 286 - 293
  • [9] A multi-camera and multimodal dataset for posture and gait analysis
    Manuel Palermo
    João M. Lopes
    João André
    Ana C. Matias
    João Cerqueira
    Cristina P. Santos
    Scientific Data, 9
  • [10] A multi-camera and multimodal dataset for posture and gait analysis
    Palermo, Manuel
    Lopes, Joao M.
    Andre, Joao
    Matias, Ana C.
    Cerqueira, Joao
    Santos, Cristina P.
    SCIENTIFIC DATA, 2022, 9 (01)