Object Classification of UWB Responses Using ST-CNN

被引:0
|
作者
Ko, Seok-Kap [1 ]
Lee, Byung-Tak [1 ]
机构
[1] ETRI, Honam Res Ctr, Energy Syst Res Sect, Daejeon, South Korea
关键词
UWB; CNN; Machine Learning; Deep Learning; S-transform; classification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
UWB response includes unique characteristics of reflecting objects. Because the response is the combination of many distortion, resonance, and multi-paths, the object classification of UWB response is difficult. In this paper, we propose an object classification method using S-transform and convolution neural network. S-transform converts time series data of UWB response to frequency-time domain which convolutional neural network can learn and classify.
引用
收藏
页码:794 / 796
页数:3
相关论文
共 50 条
  • [31] Enhanced image classification using edge CNN (E-CNN)
    Shaima Safa aldin
    Noor Baha Aldin
    Mahmut Aykaç
    The Visual Computer, 2024, 40 : 319 - 332
  • [32] Enhanced image classification using edge CNN (E-CNN)
    Aldin, Shaima Safa
    Aldin, Noor Baha
    Aykac, Mahmut
    VISUAL COMPUTER, 2024, 40 (01): : 319 - 332
  • [33] Object detection and classification of butterflies using efficient CNN and pre-trained deep convolutional neural networks
    Mattins, R. Faerie
    Sarobin, M. Vergin Raja
    Aziz, Azrina Abd
    Srivarshan, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 48457 - 48482
  • [34] CNN-based 3D object classification using Hough space of LiDAR point clouds
    Song, Wei
    Zhang, Lingfeng
    Tian, Yifei
    Fong, Simon
    Li, Jinming
    Gozho, Amanda
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2020, 10 (01)
  • [35] Object detection and classification of butterflies using efficient CNN and pre-trained deep convolutional neural networks
    R. Faerie Mattins
    M. Vergin Raja Sarobin
    Azrina Abd Aziz
    S. Srivarshan
    Multimedia Tools and Applications, 2024, 83 : 48457 - 48482
  • [36] Efficient Object Detection and Classification Approach Using HTYOLOV4 and M2RFO-CNN
    Arulalan, V
    Kumar, Dhananjay
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 44 (02): : 1703 - 1717
  • [37] People Counting Based on CNN Using IR-UWB Radar
    Yang, Xiuzhu
    Yin, Wenfeng
    Zhang, Lin
    2017 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2017, : 60 - 64
  • [38] Banknote Object Detection for the Visually Impaired using a CNN
    Thomas, Maria
    Meehan, Kevin
    2021 32ND IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC 2021), 2021,
  • [39] Object Discovery Using CNN Features in Egocentric Videos
    Bolanos, Marc
    Garolera, Maite
    Radeva, Petia
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2015), 2015, 9117 : 67 - 74
  • [40] A Comparative Study of Object Tracking using CNN and SDAE
    Yang, Wei
    Wang, Wei
    Gao, Yang
    Jin, Zhanpeng
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,