Physiological constraints dictate toxin spatial heterogeneity in snake venom glands

被引:8
|
作者
Kazandjian, Taline D. [1 ]
Hamilton, Brett R. [2 ,3 ]
Robinson, Samuel D. [2 ,4 ]
Hall, Steven R. [1 ]
Bartlett, Keirah E. [1 ]
Rowley, Paul [1 ]
Wilkinson, Mark C. [1 ]
Casewell, Nicholas R. [1 ]
Undheim, Eivind A. B. [2 ,4 ,5 ]
机构
[1] Univ Liverpool Liverpool Sch Trop Med, Ctr Snakebite Res & Intervent, Pembroke Pl, Liverpool L3 5QA, Merseyside, England
[2] Univ Queensland, Ctr Adv Imaging, St Lucia, Qld 4072, Australia
[3] Univ Queensland, Ctr Microscopy & Microanal, St Lucia, Qld 4072, Australia
[4] Univ Queensland, Inst Mol Biosci, St Lucia, Qld 4072, Australia
[5] Univ Oslo, Dept Biosci, Ctr Ecol & Evolutionary Synth, POB 1066 Blindern, N-0316 Oslo, Norway
基金
英国惠康基金; 澳大利亚研究理事会;
关键词
Venom; Snake; Behaviour; Adaptation; Evolution; Mass spectrometry imaging; SPITTING BEHAVIOR; COBRAS SERPENTES; EVOLUTION; COMPONENTS;
D O I
10.1186/s12915-022-01350-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Venoms are ecological innovations that have evolved numerous times, on each occasion accompanied by the co-evolution of specialised morphological and behavioural characters for venom production and delivery. The close evolutionary interdependence between these characters is exemplified by animals that control the composition of their secreted venom. This ability depends in part on the production of different toxins in different locations of the venom gland, which was recently documented in venomous snakes. Here, we test the hypothesis that the distinct spatial distributions of toxins in snake venom glands are an adaptation that enables the secretion of venoms with distinct ecological functions. Results We show that the main defensive and predatory peptide toxins are produced in distinct regions of the venom glands of the black-necked spitting cobra (Naja nigricollis), but these distributions likely reflect developmental effects. Indeed, we detected no significant differences in venom collected via defensive 'spitting' or predatory 'biting' events from the same specimens representing multiple lineages of spitting cobra. We also found the same spatial distribution of toxins in a non-spitting cobra and show that heterogeneous toxin distribution is a feature shared with a viper with primarily predatory venom. Conclusions Our findings suggest that heterogeneous distributions of toxins are not an adaptation to controlling venom composition in snakes. Instead, it likely reflects physiological constraints on toxin production by the venom glands, opening avenues for future research on the mechanisms of functional differentiation of populations of protein-secreting cells within adaptive contexts.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] V-ToCs (Venom Toxin Clustering): A tool for the investigation of sequence and structure similarities in snake venom toxins
    Kalogeropoulos, Konstantinos
    Rosca, Vlad
    O'Brien, Carol
    Christensen, Charlotte Risager
    Grahadi, Rahmat
    Sorensen, Christoffer Vinther
    Overath, Max D.
    Espi, Diego Ruiz
    Jenkins, David E.
    Keller, Ulrich auf dem
    Laustsen, Andreas H.
    Fryer, Thomas J.
    Jenkins, Timothy P.
    TOXICON, 2024, 250
  • [32] STUDIES ON NERVE GROWTH FACTOR(NGF) FROM SNAKE VENOM MOLECULAR HETEROGENEITY
    ANGELETTI, RH
    JOURNAL OF CHROMATOGRAPHY, 1968, 37 (01): : 62 - +
  • [33] TRANSCRIPTOMIC ANALYSIS OF SNAKE INFRALABIAL GLANDS HIGHLIGHTS A PLASTICITY IN THE SITE OF EXPRESSION OF VENOM GENES
    Campos, Pollyanna Fernandes
    Oliveira, Leonardo
    Grazziotin, Felipe
    Oliveira, Ursula Castro
    Zaher, Hussam
    Junqueira-de-Azevedo, Inacio L. M.
    TOXICON, 2019, 158 : S48 - S48
  • [34] Role of the snake venom toxin jararhagin in proinflammatory pathogenesis:: In vitro and in vivo gene expression analysis of the effects of the toxin
    Gallagher, P
    Bao, YD
    Serrano, SMT
    Laing, GD
    Theakston, RDG
    Gutiérrez, JM
    Escalante, T
    Zigrino, P
    Moura-da-Silva, AM
    Nischt, R
    Mauch, C
    Moskaluk, C
    Fox, JW
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2005, 441 (01) : 1 - 15
  • [35] BIOCHEMICAL AND IMMUNOLOGICAL STUDIES WITH SNAKE VENOM .4. ACTION OF FORMALDEHYDE ON NAJA-NIGRICOLLIS VENOM ALPHA TOXIN
    DUMAREY, C
    ANNALES DE L INSTITUT PASTEUR, 1971, 121 (05): : 675 - +
  • [36] Crystal structure of the complex between venom toxin and serum inhibitor from Viperidae snake
    Shioi, Narumi
    Tadokoro, Takashi
    Shioi, Seijiro
    Okabe, Yuki
    Matsubara, Haruki
    Kita, Shunsuke
    Ose, Toyoyuki
    Kuroki, Kimiko
    Terada, Shigeyuki
    Maenaka, Katsumi
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (04) : 1250 - 1256
  • [37] Neuronal pentraxins and TCBP49: binding proteins for the snake venom toxin, taipoxin
    Perin, MS
    Bjartmar, L
    Perin, MS
    JOURNAL OF NEUROCHEMISTRY, 2001, 77 : 7 - 7
  • [38] Categorization and Characterization of Snake Venom Variability through Intact Toxin Analysis by Mass Spectrometry
    Alonso, Luis L.
    Slagboom, Julien
    Casewell, Nicholas R.
    Samanipour, Saer
    Kool, Jeroen
    JOURNAL OF PROTEOME RESEARCH, 2025, 24 (03) : 1329 - 1341
  • [39] 3-DIMENSIONAL STRUCTURE OF SNAKE-VENOM ALPHA-COBRA TOXIN
    WALKINSHAW, MD
    SAENGER, W
    MAELICKE, A
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1981, 154 (3-4): : 325 - 326
  • [40] Accelerated evolution of toxin genes: Exonization and intronization in snake venom disintegrin/metalloprotease genes
    Kini, R. Manjunatha
    TOXICON, 2018, 148 : 16 - 25