The Weak Galerkin Finite Element Method for Solving the Time-Dependent Integro-Differential Equations

被引:7
|
作者
Wang, Xiuli [1 ,2 ]
Zhai, Qilong [3 ]
Zhang, Ran [2 ]
Zhang, Shangyou [4 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[4] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
Integro-differential problem; weak Galerkin finite element method; discrete weak gradient; discrete weak divergence; SCHEME; POLYNOMIALS; DYNAMICS;
D O I
10.4208/aamm.OA-2019-0088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we solve linear parabolic integral differential equations using the weak Galerkin finite element method (WG) by adding a stabilizer. The semi-discrete and fully-discrete weak Galerkin finite element schemes are constructed. Optimal convergent orders of the solution of the WG in L-2 and H-1 norm are derived. Several computational results confirm the correctness and efficiency of the method.
引用
收藏
页码:164 / 188
页数:25
相关论文
共 50 条