The Weak Galerkin Finite Element Method for Solving the Time-Dependent Integro-Differential Equations

被引:7
|
作者
Wang, Xiuli [1 ,2 ]
Zhai, Qilong [3 ]
Zhang, Ran [2 ]
Zhang, Shangyou [4 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[4] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
Integro-differential problem; weak Galerkin finite element method; discrete weak gradient; discrete weak divergence; SCHEME; POLYNOMIALS; DYNAMICS;
D O I
10.4208/aamm.OA-2019-0088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we solve linear parabolic integral differential equations using the weak Galerkin finite element method (WG) by adding a stabilizer. The semi-discrete and fully-discrete weak Galerkin finite element schemes are constructed. Optimal convergent orders of the solution of the WG in L-2 and H-1 norm are derived. Several computational results confirm the correctness and efficiency of the method.
引用
收藏
页码:164 / 188
页数:25
相关论文
共 50 条
  • [1] Weak Galerkin finite-element method for time-fractional nonlinear integro-differential equations
    Wang, Haifeng
    Xu, Da
    Guo, Jing
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):
  • [2] Weak Galerkin finite-element method for time-fractional nonlinear integro-differential equations
    Haifeng Wang
    Da Xu
    Jing Guo
    Computational and Applied Mathematics, 2020, 39
  • [3] Weak Galerkin finite element methods for linear parabolic integro-differential equations
    Zhu, Ailing
    Xu, Tingting
    Xu, Qiang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (05) : 1357 - 1377
  • [4] Perturbed Galerkin Method for Solving Integro-Differential Equations
    Issa, K.
    Biazar, J.
    Agboola, T.O.
    Aliu, T.
    Journal of Applied Mathematics, 2022, 2022
  • [5] THE WEAK GALERKIN FINITE ELEMENT METHOD FOR SOLVING THE TIME-DEPENDENT STOKES FLOW
    Wang, Xiuli
    Liu, Yuanyuan
    Zhai, Qilong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (05) : 732 - 745
  • [6] Perturbed Galerkin Method for Solving Integro-Differential Equations
    Issa, K.
    Biazar, J.
    Agboola, T. O.
    Aliu, T.
    JOURNAL OF APPLIED MATHEMATICS, 2022, 2022
  • [7] Continuous Galerkin finite element methods for hyperbolic integro-differential equations
    Saedpanah, Fardin
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) : 885 - 908
  • [8] Weak Galerkin finite element method for the parabolic integro-differential equation with weakly singular kernel
    Jun Zhou
    Da Xu
    Xiuxiu Dai
    Computational and Applied Mathematics, 2019, 38
  • [9] Weak Galerkin finite element method for the parabolic integro-differential equation with weakly singular kernel
    Zhou, Jun
    Xu, Da
    Dai, Xiuxiu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02):
  • [10] A wavelet Petrov-Galerkin method for solving integro-differential equations
    Maleknejad, K.
    Rabbani, M.
    Aghazadeh, N.
    Karami, M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (09) : 1572 - 1590