Oscillation criteria for neutral second-order half-linear differential equations with applications to Euler type equations

被引:10
|
作者
Fisnarova, Simona [1 ]
Marik, Robert [1 ]
机构
[1] Mendel Univ Brno, Dept Math, Brno 61300, Czech Republic
来源
关键词
half-linear differential equation; oscillation criteria; Riccati technique; delay equation; neutral equation; Euler type equation;
D O I
10.1186/1687-2770-2014-83
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the second-order neutral delay half-linear differential equation [r(t)phi(z'(t))]' + q(t)phi(x(sigma(t))) = 0, where phi(t) = vertical bar t vertical bar(alpha-1)t, alpha >= 1 and z(t) = x(t) + p(t) x(tau(t)). We use the method of Riccati type substitution and derive oscillation criteria for this equation. By an example of the neutral Euler type equation we show that the obtained results are sharp and improve the results of previous authors. Among others, we improve the results of Sun et al. (Abstr. Appl. Anal. 2012:819342, 2012) and discuss also the case when sigma omicron tau not equal tau omicron sigma.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Oscillation criteria for second order half-linear difference equations
    Rehák, P
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2001, 7 (04) : 483 - 505
  • [42] KNESER-TYPE OSCILLATION CRITERIA FOR SECOND-ORDER HALF-LINEAR ADVANCED DIFFERENCE EQUATIONS
    Indrajith, N.
    Graef, John R.
    Thandapani, E.
    OPUSCULA MATHEMATICA, 2022, 42 (01) : 55 - 64
  • [43] PHILOS TYPE CRITERIA FOR SECOND-ORDER HALF-LINEAR DYNAMIC EQUATIONS
    Grace, Said R.
    Agarwal, Ravi P.
    Bohner, Martin
    O'Regan, Donal
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (01): : 211 - 222
  • [44] OSCILLATION CRITERIA FOR FOURTH ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS
    Jaros, Jaroslav
    Takasi, Kusano
    Tanigawa, Tomoyuki
    ARCHIVUM MATHEMATICUM, 2020, 56 (02): : 115 - 125
  • [45] Improved oscillation results for second-order half-linear delay differential equations
    Chatzarakis, George E.
    Jadlovska, Irena
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (01): : 170 - 179
  • [46] A sharp oscillation criterion for second-order half-linear advanced differential equations
    G. E. Chatzarakis
    S. R. Grace
    I. Jadlovská
    Acta Mathematica Hungarica, 2021, 163 : 552 - 562
  • [47] A sharp oscillation criterion for second-order half-linear advanced differential equations
    Chatzarakis, G. E.
    Grace, S. R.
    Jadlovska, I
    ACTA MATHEMATICA HUNGARICA, 2021, 163 (02) : 552 - 562
  • [48] A linearization method in oscillation theory of half-linear second-order differential equations
    Dosly, Ondrej
    Pena, Simon
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2005, 2005 (05) : 535 - 545
  • [49] Conjugacy of half-linear second-order differential equations
    Dosly, O
    Elbert, A
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 : 517 - 525
  • [50] A linearization method in oscillation theory of half-linear second-order differential equations
    Ondřej Došlý
    Simón Peña
    Journal of Inequalities and Applications, 2005