Quantum advantage in transmitting a permutation

被引:1
|
作者
Korff, JV [1 ]
Kempe, J
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
[4] Univ Paris 11, CNRS, UMR 8623, LRI, F-91405 Orsay, France
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.93.260502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a quantum scheme to "color code" a set of objects in order to record which one is which. In the classical case, N distinct colors are required to color code N objects. We show that, in the quantum case, only N/e distinct "colors" are required, where eapproximate to2.718 28 is Euler's constant. If the number of colors is less than optimal, the objects may still be correctly distinguished with some success probability less than 1. We show that the success probability of the quantum scheme is better than the corresponding classical one and is information-theoretically optimal.
引用
收藏
页码:260502 / 1
页数:4
相关论文
共 50 条
  • [41] Tracing the orbitals of the quantum permutation group
    McCarthy, J. P.
    ARCHIV DER MATHEMATIK, 2023, 121 (2) : 211 - 224
  • [42] Homological properties of quantum permutation algebras
    Bichon, Julien
    Franz, Uwe
    Gerhold, Malte
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 1671 - 1695
  • [43] Nonlocal games and quantum permutation groups
    Lupini, Martino
    Mancinska, Laura
    Roberson, David E.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (05)
  • [44] Permutation-invariant quantum codes
    Ouyang, Yingkai
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [45] Integration over quantum permutation groups
    Banica, Teodor
    Collins, Benoit
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 242 (02) : 641 - 657
  • [46] Quantum Circuits for the Unitary Permutation Problem
    Facchini, Stefano
    Perdrix, Simon
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2015), 2015, 9076 : 324 - 331
  • [47] REPRESENTATION OF PERMUTATION OPERATORS IN QUANTUM MECHANICS
    SEAGRAVES, P
    NUCLEAR PHYSICS, 1966, 80 (03): : 674 - +
  • [48] A quantum transmitting Schrodinger-Poisson system
    Baro, M
    Kaiser, HC
    Neidhardt, H
    Rehberg, J
    REVIEWS IN MATHEMATICAL PHYSICS, 2004, 16 (03) : 281 - 330
  • [49] Revealing advantage in a quantum network
    Kaushiki Mukherjee
    Biswajit Paul
    Debasis Sarkar
    Quantum Information Processing, 2016, 15 : 2895 - 2921
  • [50] Quantum advantage with shallow circuits
    Bravyi, Sergey
    Gosset, David
    Koenig, Robert
    SCIENCE, 2018, 362 (6412) : 308 - +