Quantum advantage in transmitting a permutation

被引:1
|
作者
Korff, JV [1 ]
Kempe, J
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
[4] Univ Paris 11, CNRS, UMR 8623, LRI, F-91405 Orsay, France
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.93.260502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a quantum scheme to "color code" a set of objects in order to record which one is which. In the classical case, N distinct colors are required to color code N objects. We show that, in the quantum case, only N/e distinct "colors" are required, where eapproximate to2.718 28 is Euler's constant. If the number of colors is less than optimal, the objects may still be correctly distinguished with some success probability less than 1. We show that the success probability of the quantum scheme is better than the corresponding classical one and is information-theoretically optimal.
引用
收藏
页码:260502 / 1
页数:4
相关论文
共 50 条
  • [1] TRANSMITTING SIGNALS TO CONSUMERS FOR COMPETITIVE ADVANTAGE
    BLOOM, PN
    REVE, T
    BUSINESS HORIZONS, 1990, 33 (04) : 58 - 66
  • [2] Quantum advantage
    Durrani, Matin
    PHYSICS WORLD, 2024, 37 (05)
  • [3] Quantum Permutation Synchronization
    Birdal, Tolga
    Golyanik, Vladislav
    Theobalt, Christian
    Guibas, Leonidas
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13117 - 13128
  • [4] Quantum Permutation Matrices
    Weber, Moritz
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (03)
  • [5] Quantum Permutation Matrices
    Moritz Weber
    Complex Analysis and Operator Theory, 2023, 17
  • [6] THE QUANTUM TRANSMITTING BOUNDARY METHOD
    LENT, CS
    KIRKNER, DJ
    JOURNAL OF APPLIED PHYSICS, 1990, 67 (10) : 6353 - 6359
  • [7] Relation Between Quantum Advantage in Supervised Learning and Quantum Computational Advantage
    Perez-Guijarro, Jordi
    Pages-Zamora, Alba
    Fonollosa, Javier R.
    IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2024, 5 : 1 - 17
  • [8] Finite quantum groups and quantum permutation groups
    Banica, Teodor
    Bichon, Julien
    Natale, Sonia
    ADVANCES IN MATHEMATICS, 2012, 229 (06) : 3320 - 3338
  • [9] Turning a quantum advantage
    Ball, Philip
    Gambetta, Jay
    PHYSICS WORLD, 2022, 35 (10) : 33 - 36
  • [10] Quantum advantage deferred
    Andrew M. Childs
    Nature Physics, 2017, 13 : 1148 - 1148