Automatic liver tumor segmentation used the cascade multi-scale attention architecture method based on 3D U-Net

被引:6
|
作者
Wu, Yun [1 ,2 ]
Shen, Huaiyan [2 ]
Tan, Yaya [2 ]
Shi, Yucheng [2 ]
机构
[1] Guizhou Univ, State Key Lab Publ Big Data, Guiyang 550025, Peoples R China
[2] Guizhou Univ, Coll Comp Sci & Technol, Guiyang 550025, Peoples R China
基金
美国国家科学基金会;
关键词
Liver tumor segmentation; 3D U-Net; Cascade structure; Multi-scale features; Attention mechanism;
D O I
10.1007/s11548-022-02653-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose Due to the complex structure of liver tumors and the low contrast with normal tissues make it still a challenging task to accurately segment liver tumors from CT images. To address these problems, we propose an end-to-end segmentation method for liver tumors. Methods The method uses a cascade structure to improve the network's extraction of information. First, the Side-output Feature Fusion Attention block is used to fuse features at different levels and combine with attention mechanism to focus on important information. Then, the Atrous Spatial Pyramid Pooling Attention block is used to extract multi-scale semantic features. Finally, the Multi-scale Prediction Fusion block is used to fully fused the features captured at each layer of the network. Result To verify the performance of the proposed model and the effectiveness of each module, we evaluate it on LiTS and 3DIRCADb datasets and obtained Dice per Case of 0.665 and 0.719, respectively, and Dice Global of 0.812 and 0.784, respectively. Conclusion The proposed method is compared with the basic model 3D U-Net, as well as some mainstream methods based on U-Net variants, and our method achieves better performance on the liver tumor segmentation task and is superior to most segmentation algorithms.
引用
收藏
页码:1915 / 1922
页数:8
相关论文
共 50 条
  • [21] Automatic brain tumor segmentation from Multiparametric MRI based on cascaded 3D U-Net and 3D U-Net++
    Li, Pengyu
    Wu, Wenhao
    Liu, Lanxiang
    Serry, Fardad Michael
    Wang, Jinjia
    Han, Hui
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [22] NDNN based U-Net: An Innovative 3D Brain Tumor Segmentation Method
    Trivedi, Sandeep
    Patel, Nikhil
    Faruqui, Nuruzzaman
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 538 - 546
  • [23] Memory-Efficient Cascade 3D U-Net for Brain Tumor Segmentation
    Cheng, Xinchao
    Jiang, Zongkang
    Sun, Qiule
    Zhang, Jianxin
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 242 - 253
  • [24] Multi-Scale Residual U-Net Fundus Blood Vessel Segmentation Based on Attention Mechanism
    Zhao Feng
    Zhong Beibei
    Liu Hanqiang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (18)
  • [25] Brain Tumor Segmentation Based on 3D Residual U-Net
    Bhalerao, Megh
    Thakur, Siddhesh
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 218 - 225
  • [26] MSN-Net: a multi-scale context nested U-Net for liver segmentation
    Fan, Tongle
    Wang, Guanglei
    Wang, Xia
    Li, Yan
    Wang, Hongrui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (06) : 1089 - 1097
  • [27] Aircraft segmentation in remote sensing images based on multi-scale residual U-Net with attention
    Xuqi Wang
    Shanwen Zhang
    Lei Huang
    Multimedia Tools and Applications, 2024, 83 : 17855 - 17872
  • [28] MSN-Net: a multi-scale context nested U-Net for liver segmentation
    Tongle Fan
    Guanglei Wang
    Xia Wang
    Yan Li
    Hongrui Wang
    Signal, Image and Video Processing, 2021, 15 : 1089 - 1097
  • [29] Aircraft segmentation in remote sensing images based on multi-scale residual U-Net with attention
    Wang, Xuqi
    Zhang, Shanwen
    Huang, Lei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (06) : 17855 - 17872
  • [30] LIVER VESSELS SEGMENTATION BASED ON 3D RESIDUAL U-NET
    Yu, Wei
    Fang, Bin
    Liu, Yongqing
    Gao, Mingqi
    Zheng, Shenhai
    Wang, Yi
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 250 - 254