Linear switching systems with slow growth of trajectories

被引:3
|
作者
Protasov, Vladimir Yu [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow, Russia
[2] Natl Res Univ, Higher Sch Econ, Fac Comp Sci, Moscow, Russia
关键词
Dynamical systems; Linear switching systems; Growth of trajectories; Stability; Resonance; MARGINAL INSTABILITY; STABILITY; PRODUCTS;
D O I
10.1016/j.sysconle.2016.01.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove the existence of positive linear switching systems (continuous time), whose trajectories grow to infinity, but slower than a given increasing function. This implies that, unlike the situation with linear ODE, the maximal growth of trajectories of linear systems may be arbitrarily slow. For systems generated by a finite set of matrices, this phenomenon is proved to be impossible in dimension 2, while in all bigger dimensions the sublinear growth may occur. The corresponding examples are provided and several open problems are formulated. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 60
页数:7
相关论文
共 50 条
  • [31] Recovering trajectories of chaotic piecewise linear dynamical systems
    AzizAlaoui, MA
    Fedorenko, AD
    Lozi, R
    Sharkovsky, AN
    [J]. CONTROL OF OSCILLATIONS AND CHAOS - 1997 1ST INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS 1-3, 1997, : 230 - 233
  • [32] Control of Airy Plasmon Trajectories in Linear Gradient Systems
    Minovich, A. E.
    Bleckmann, F.
    Frohnhaus, J.
    Neshev, D. N.
    Linden, S.
    [J]. 2013 7TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS 2013), 2013, : 415 - 417
  • [33] Supervisory switching control for linear hyperbolic systems
    Lamare, Pierre-Olivier
    [J]. AUTOMATICA, 2019, 105 : 64 - 70
  • [34] Robust switching design for linear hybrid systems
    Sun, Zhendong
    Su, Weizhou
    Wang, Cong
    [J]. 2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 1179 - +
  • [35] Switching Robustness Analysis for Switched Linear Systems
    Peng, Yuping
    Sun, Zhendong
    Ge, Shuzhi Sam
    [J]. ASCC: 2009 7TH ASIAN CONTROL CONFERENCE, VOLS 1-3, 2009, : 176 - 181
  • [36] Stability and robustness of planar switching linear systems
    Polderman, J. W.
    Langerak, R.
    [J]. SYSTEMS & CONTROL LETTERS, 2012, 61 (09) : 904 - 910
  • [37] On deterministic identifiability of uncontrolled linear switching systems
    Whyte, Jason M.
    [J]. WSEAS Transactions on Systems, 2007, 6 (05): : 1028 - 1035
  • [38] A method for the order reduction of linear switching systems
    Blanchini, Franco
    Casagrande, Daniele
    Krajewski, Wieslaw
    Viaro, Umberto
    [J]. 2017 22ND INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2017, : 279 - 284
  • [39] Active mode observability of switching linear systems
    Baglietto, Marco
    Battistelli, Giorgio
    Scardovi, Luca
    [J]. AUTOMATICA, 2007, 43 (08) : 1442 - 1449
  • [40] Switching control of linear systems for generating chaos
    Liu, Xinzhi
    Teo, Kok-Lay
    Zhang, Hongtao
    Chen, Guanrong
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (03) : 725 - 733