Linear switching systems with slow growth of trajectories

被引:3
|
作者
Protasov, Vladimir Yu [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow, Russia
[2] Natl Res Univ, Higher Sch Econ, Fac Comp Sci, Moscow, Russia
关键词
Dynamical systems; Linear switching systems; Growth of trajectories; Stability; Resonance; MARGINAL INSTABILITY; STABILITY; PRODUCTS;
D O I
10.1016/j.sysconle.2016.01.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove the existence of positive linear switching systems (continuous time), whose trajectories grow to infinity, but slower than a given increasing function. This implies that, unlike the situation with linear ODE, the maximal growth of trajectories of linear systems may be arbitrarily slow. For systems generated by a finite set of matrices, this phenomenon is proved to be impossible in dimension 2, while in all bigger dimensions the sublinear growth may occur. The corresponding examples are provided and several open problems are formulated. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 60
页数:7
相关论文
共 50 条
  • [1] Stability of linear systems with slow and fast time variation and switching
    Liberzon, Daniel
    Shim, Hyungbo
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 674 - 678
  • [2] Stabilizing slow-switching strategy for continuous-time switched linear systems
    Xiong J.-D.
    Liu Y.-Q.
    Shen Z.-P.
    Wu J.
    [J]. Wu, Jun (susanwuj@163.com), 1600, Northeast University (31): : 797 - 804
  • [3] Stabilising slow-switching laws for switched discrete-time linear systems
    Wu, A. -G.
    Feng, G.
    Duan, G. -R.
    Gao, H.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (16): : 1843 - 1858
  • [4] A Stabilizing Slow-Switching Law for Switched Discrete-Time Linear Systems
    Wu, Ai-Guo
    Feng, Gang
    Duan, Guang-Ren
    Gao, Huijun
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2010, : 2099 - 2104
  • [5] Periodic trajectories in planar discontinuous piecewise linear systems with only centers and with a nonregular switching line
    Alves, A. M.
    Euzebio, R. D.
    [J]. NONLINEARITY, 2023, 36 (12) : 6747 - 6776
  • [6] Linear growth trajectories in Zimbabwean infants
    Gough, Ethan K.
    Moodie, Erica E. M.
    Prendergast, Andrew J.
    Ntozini, Robert
    Moulton, Lawrence H.
    Humphrey, Jean H.
    Manges, Amee R.
    [J]. AMERICAN JOURNAL OF CLINICAL NUTRITION, 2016, 104 (06): : 1616 - 1627
  • [7] Linear systems with locally integrable trajectories
    Akram, M. Saeed
    Lomadze, Vakhtang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2277 - 2289
  • [8] On stabilization of switching linear systems
    Battistelli, Giorgio
    [J]. AUTOMATICA, 2013, 49 (05) : 1162 - 1173
  • [9] Stabilizability of linear switching systems
    De Santis, E.
    Di Benedetto, M. D.
    Pola, G.
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2008, 2 (03) : 750 - 764
  • [10] On Trajectories of Dynamic Systems Lying on Hypersurfaces of Linear Systems
    Ayryan, E. A.
    Gambaryan, M. M.
    Malykh, M. D.
    Sevastianov, L. A.
    [J]. PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2023, 20 (02) : 183 - 187