Uncertainty quantification patterns for multiscale models

被引:8
|
作者
Ye, D. [1 ]
Veen, L. [2 ]
Nikishova, A. [1 ]
Lakhlili, J. [3 ]
Edeling, W. [4 ]
Luk, O. O. [3 ]
Krzhizhanovskaya, V. V. [1 ,5 ]
Hoekstra, A. G. [1 ]
机构
[1] Univ Amsterdam, Fac Sci, Informat Inst, Computat Sci Lab, Amsterdam, Netherlands
[2] Netherlands eSci Ctr, Amsterdam, Netherlands
[3] Max Planck Inst Plasma Phys, Garching, Germany
[4] Ctr Wiskunde & Informat, Sci Comp Grp, Amsterdam, Netherlands
[5] ITMO Univ, St Petersburg, Russia
关键词
uncertainty quantification; uncertainty propagation; multiscale simulation; surrogate modelling; PROPAGATION;
D O I
10.1098/rsta.2020.0072
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Uncertainty quantification (UQ) is a key component when using computational models that involve uncertainties, e.g. in decision-making scenarios. In this work, we present uncertainty quantification patterns (UQPs) that are designed to support the analysis of uncertainty in coupled multi-scale and multi-domain applications. UQPs provide the basic building blocks to create tailored UQ for multiscale models. The UQPs are implemented as generic templates, which can then be customized and aggregated to create a dedicated UQ procedure for multiscale applications. We present the implementation of the UQPs with multiscale coupling toolkit Multiscale Coupling Library and Environment 3. Potential speed-up for UQPs has been derived as well. As a proof of concept, two examples of multiscale applications using UQPs are presented. This article is part of the theme issue 'Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification in silico'.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [21] Special Issue on Uncertainty Quantification in Multiscale System Design and Simulation
    Wang, Yan
    Swiler, Laura
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART B-MECHANICAL ENGINEERING, 2018, 4 (01):
  • [22] Microstructure model reduction and uncertainty quantification in multiscale deformation processes
    Kouchmeshky, Babak
    Zabaras, Nicholas
    COMPUTATIONAL MATERIALS SCIENCE, 2010, 48 (02) : 213 - 227
  • [23] An imprecise multiscale uncertainty quantification framework for fiber reinforced composites
    Zhao, Haodong
    Zhou, Changcong
    PROBABILISTIC ENGINEERING MECHANICS, 2024, 78
  • [24] Multiscale Uncertainty Quantification Based on a Generalized Hidden Markov Model
    Wang, Yan
    JOURNAL OF MECHANICAL DESIGN, 2011, 133 (03)
  • [25] Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters
    Vu-Bac, N.
    Rafiee, R.
    Zhuang, X.
    Lahmer, T.
    Rabczuk, T.
    COMPOSITES PART B-ENGINEERING, 2015, 68 : 446 - 464
  • [26] Semi-intrusive uncertainty propagation for multiscale models
    Nikishova, Anna
    Hoekstra, Alfons G.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2019, 35 : 80 - 90
  • [27] A machine learning approach for efficient uncertainty quantification using multiscale methods
    Chan, Shing
    Elsheikh, Ahmed H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 354 : 493 - 511
  • [28] Multilevel Monte Carlo applied for uncertainty quantification in stochastic multiscale systems
    Kimaev, Grigoriy
    Chaffart, Donovan
    Ricardez-Sandoval, Luis A.
    AICHE JOURNAL, 2020, 66 (08)
  • [29] AN OVERVIEW ON UNCERTAINTY QUANTIFICATION AND PROBABILISTIC LEARNING ON MANIFOLDS IN MULTISCALE MECHANICS OF MATERIALS
    Soize, Christian
    MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 2023, 11 (01) : 87 - 173
  • [30] Introducing VECMAtk - Verification, Validation and Uncertainty Quantification for Multiscale and HPC Simulations
    Groen, Derek
    Richardson, Robin A.
    Wright, David W.
    Jancauskas, Vytautas
    Sinclair, Robert
    Karlshoefer, Paul
    Vassaux, Maxime
    Arabnejad, Hamid
    Piontek, Tomasz
    Kopta, Piotr
    Bosak, Bartosz
    Lakhlili, Jalal
    Hoenen, Olivier
    Suleimenova, Diana
    Edeling, Wouter
    Crommelin, Daan
    Nikishova, Anna
    Coveney, Peter, V
    COMPUTATIONAL SCIENCE - ICCS 2019, PT IV, 2019, 11539 : 479 - 492