Necessary and sufficient conditions for the bounds of the commutator of a Littlewood-Paley operator with fractional differentiation

被引:0
|
作者
Wu, Xiongtao [1 ]
Chen, Yanping [2 ]
Wang, Liwei [3 ]
Tao, Wenyu [4 ]
机构
[1] Hengyang Normal Univ, Sch Math & Stat, Dept Math, Hengyang 421008, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Math & Phys, Dept Appl Math, Beijing 100083, Peoples R China
[3] Anhui Polytech Univ, Sch Math & Phys, Wuhu 241000, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Commutator; Littlewood-Paley operator; Rough kernel; BMO Sobolev spaces; 42B20; 42B25; L-P-BOUNDEDNESS; MARCINKIEWICZ INTEGRALS; ELLIPTIC-OPERATORS;
D O I
10.1007/s13324-019-00302-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For b is an element of L-loc(R-n) and 0 < alpha < 1, we use fractional differentiation to define a new type of commutator of the Littlewood-Paley g-function operator, namely g Omega,alpha;b(f)(x)=(integral 0 infinity|1/t integral(|x-y|<= t)Omega(x-y)|x-y|n+alpha-1(b(x)-b(y))f(y)dy|(2)dt/t)(1/2). Here, we obtain the necessary and sufficient conditions for the function b to guarantee that g Omega,alpha;b is a bounded operator on L2(R-n). More precisely, if Omega is an element of L(log+L)(1/2)(Sn-1) and b is an element of I alpha(BMO), then g Omega,alpha;b is bounded on L-2(R-n). Conversely, if g Omega,alpha;b is bounded on L-2(R-n), then b is an element of Lip alpha(R-n) for 0 <alpha < 1.
引用
收藏
页码:2109 / 2132
页数:24
相关论文
共 50 条