Semantic face image inpainting based on Generative Adversarial Network

被引:1
|
作者
Zhang, Heshu [1 ]
Li, Tao [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing, Peoples R China
关键词
image degradation; image inpainting; generative adversarial network; multi-scale; feature fusion;
D O I
10.1109/YAC51587.2020.9337498
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the popularity of Internet technology and camera equipment, people are accustomed to using images and videos to record life. Image deletion is one of the most important degradation directions when image degradation occurs. The repair process of the digital image repair method is to use the information of the missing part of the image, according to certain repair rules to repair and fill the missing part of the image, so that the repaired image is complete and natural. At present, the existing image inpainting algorithms still have some shortcomings in visual effect and algorithm efficiency. In order to solve the problems of fuzzy details and poor visual perception of the existing technology in the implementation of face image inpainting results, as well as the problem that the whole model could not be controlled due to the mode collapse caused by the use of the generative adversarial network, this paper provides a semantic inpainting method of face image based on multi-scale feature fusion. Using suppression enhancement unit to suppress useless channels, enhance useful channels, acquire long-range and multi-level dependency interaction without increasing parameters, coordinate the details of each position and the details of the far end when repairing the image, expand the receptive field, make up for the lack of information when generating the missing image edge, balance the learning ability of generating network and discriminating network to improve the inpainting effect of missing face image.
引用
收藏
页码:530 / 535
页数:6
相关论文
共 50 条
  • [21] Self-prior guided generative adversarial network for image inpainting
    Shi, Changhong
    Liu, Weirong
    Meng, Jiahao
    Jia, Xiongfei
    Liu, Jie
    VISUAL COMPUTER, 2025, 41 (04): : 2939 - 2951
  • [22] Masked Image Inpainting Algorithm Based on Generative Adversarial Nets
    Cao Z.-Y.
    Niu S.-Z.
    Zhang J.-W.
    2018, Beijing University of Posts and Telecommunications (41): : 81 - 86
  • [23] Image Inpainting Using Generative Adversarial Networks
    Luo H.-L.
    Ao Y.
    Yuan P.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (10): : 1891 - 1898
  • [24] Semantic Map Based Image Compression via Conditional Generative Adversarial Network
    Wei, Zhensong
    Liao, Zeyi
    Bai, Huihui
    Zhao, Yao
    IMAGE AND GRAPHICS, ICIG 2019, PT III, 2019, 11903 : 13 - 22
  • [25] Generative adversarial network based on semantic consistency for text-to-image generation
    Ma, Yue
    Liu, Li
    Zhang, Huaxiang
    Wang, Chunjing
    Wang, Zekang
    APPLIED INTELLIGENCE, 2023, 53 (04) : 4703 - 4716
  • [26] A Generative Adversarial Network for Infrared and Visible Image Fusion Based on Semantic Segmentation
    Hou, Jilei
    Zhang, Dazhi
    Wu, Wei
    Ma, Jiayi
    Zhou, Huabing
    ENTROPY, 2021, 23 (03)
  • [27] Generative adversarial network based on semantic consistency for text-to-image generation
    Yue Ma
    Li Liu
    Huaxiang Zhang
    Chunjing Wang
    Zekang Wang
    Applied Intelligence, 2023, 53 : 4703 - 4716
  • [28] Face Inpainting via Nested Generative Adversarial Networks
    Li, Zhijiang
    Zhu, Haonan
    Cao, Liqin
    Mao, Lei
    Zhong, Yanfei
    Ma, Ailong
    IEEE ACCESS, 2019, 7 : 155462 - 155471
  • [29] Face frontalization based on generative adversarial network
    Hu H.-Y.
    Gai S.-Y.
    Da F.-P.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2021, 55 (01): : 116 - 123and152
  • [30] EIGAN: ENHANCED INPAINTING GENERATIVE ADVERSARIAL NETWORK
    Chen, Feiyu
    Deng, Wei
    Zhang, Chuanfa
    Gu, Kangzheng
    Zhang, Wenqiang
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,