A benchmark for RNA-seq deconvolution analysis under dynamic testing environments

被引:68
|
作者
Jin, Haijing [1 ]
Liu, Zhandong [2 ,3 ]
机构
[1] Baylor Coll Med, Grad Program Quantitat & Computat Biosci, Houston, TX 77030 USA
[2] Texas Childrens Hosp, Jan & Dan Duncan Neurol Res Inst, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Pediat, Houston, TX 77030 USA
关键词
D O I
10.1186/s13059-021-02290-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Deconvolution analyses have been widely used to track compositional alterations of cell types in gene expression data. Although a large number of novel methods have been developed, due to a lack of understanding of the effects of modeling assumptions and tuning parameters, it is challenging for researchers to select an optimal deconvolution method suitable for the targeted biological conditions. Results To systematically reveal the pitfalls and challenges of deconvolution analyses, we investigate the impact of several technical and biological factors including simulation model, quantification unit, component number, weight matrix, and unknown content by constructing three benchmarking frameworks. These frameworks cover comparative analysis of 11 popular deconvolution methods under 1766 conditions. Conclusions We provide new insights to researchers for future application, standardization, and development of deconvolution tools on RNA-seq data.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] RNA-seq analysis of single bovine blastocysts
    Chitwood, James L.
    Rincon, Gonzalo
    Kaiser, German G.
    Medrano, Juan F.
    Ross, Pablo J.
    BMC GENOMICS, 2013, 14
  • [42] Analysis of the Pain Transcriptome Using RNA-Seq
    Goswami, Samridhi
    Mishra, Santosh
    Hoon, Mark
    Mannes, Andrew
    Iadarola, Michael
    NEUROPSYCHOPHARMACOLOGY, 2013, 38 : S352 - S352
  • [43] Grape RNA-Seq analysis pipeline environment
    Knowles, David G.
    Roeder, Maik
    Merkel, Angelika
    Guigo, Roderic
    BIOINFORMATICS, 2013, 29 (05) : 614 - 621
  • [44] Molecular Indexing for Improved RNA-Seq Analysis
    Toloue, M.
    Risinger, J.
    Nakashe, P.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2013, 15 (06): : 939 - 939
  • [45] Visualization and analysis of RNA-Seq assembly graphs
    Nazarie, Fahmi W.
    Shih, Barbara
    Angus, Tim
    Barnett, Mark W.
    Chen, Sz-Hau
    Summers, Kim M.
    Klein, Karsten
    Faulkner, Geoffrey J.
    Saini, Harpreet K.
    Watson, Mick
    van Dongen, Stijn
    Enright, Anton J.
    Freeman, Tom C.
    NUCLEIC ACIDS RESEARCH, 2019, 47 (14) : 7262 - 7275
  • [46] Genomics: the state of the art in RNA-seq analysis
    Ian Korf
    Nature Methods, 2013, 10 : 1165 - 1166
  • [47] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243
  • [48] A novel feature selection for RNA-seq analysis
    Han, Henry
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2017, 71 : 245 - 257
  • [49] RNA-seq Analysis of Gastrointestinal Stromal Tumors
    Jaladi, Soumya
    Davila, Jaime
    Voss, Jesse
    Jackson, Rory
    Angirekula, Mounika
    Atiq, Mazen
    Kipp, Benjamin
    Mopuri, Rohini
    Ida, Cristiane
    Minn, Kay
    Halling, Kevin
    LABORATORY INVESTIGATION, 2020, 100 (SUPPL 1) : 52 - 53
  • [50] Statistical analysis of RNA-seq data at scale
    Leek, Jeff T.
    GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 563 - 563