A benchmark for RNA-seq deconvolution analysis under dynamic testing environments

被引:68
|
作者
Jin, Haijing [1 ]
Liu, Zhandong [2 ,3 ]
机构
[1] Baylor Coll Med, Grad Program Quantitat & Computat Biosci, Houston, TX 77030 USA
[2] Texas Childrens Hosp, Jan & Dan Duncan Neurol Res Inst, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Pediat, Houston, TX 77030 USA
关键词
D O I
10.1186/s13059-021-02290-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Deconvolution analyses have been widely used to track compositional alterations of cell types in gene expression data. Although a large number of novel methods have been developed, due to a lack of understanding of the effects of modeling assumptions and tuning parameters, it is challenging for researchers to select an optimal deconvolution method suitable for the targeted biological conditions. Results To systematically reveal the pitfalls and challenges of deconvolution analyses, we investigate the impact of several technical and biological factors including simulation model, quantification unit, component number, weight matrix, and unknown content by constructing three benchmarking frameworks. These frameworks cover comparative analysis of 11 popular deconvolution methods under 1766 conditions. Conclusions We provide new insights to researchers for future application, standardization, and development of deconvolution tools on RNA-seq data.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A benchmark for RNA-seq deconvolution analysis under dynamic testing environments
    Haijing Jin
    Zhandong Liu
    Genome Biology, 22
  • [2] A benchmark for RNA-seq quantification pipelines
    Teng, Mingxiang
    Love, Michael I.
    Davis, Carrie A.
    Djebali, Sarah
    Dobin, Alexander
    Graveley, Brenton R.
    Li, Sheng
    Mason, Christopher E.
    Olson, Sara
    Pervouchine, Dmitri
    Sloan, Cricket A.
    Wei, Xintao
    Zhan, Lijun
    Irizarry, Rafael A.
    GENOME BIOLOGY, 2016, 17
  • [3] A benchmark for RNA-seq quantification pipelines
    Mingxiang Teng
    Michael I. Love
    Carrie A. Davis
    Sarah Djebali
    Alexander Dobin
    Brenton R. Graveley
    Sheng Li
    Christopher E. Mason
    Sara Olson
    Dmitri Pervouchine
    Cricket A. Sloan
    Xintao Wei
    Lijun Zhan
    Rafael A. Irizarry
    Genome Biology, 17
  • [4] Dynamic Model for RNA-seq Data Analysis
    Li, Lerong
    Xiong, Momiao
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [5] Erratum to: A benchmark for RNA-seq quantification pipelines
    Mingxiang Teng
    Michael I. Love
    Carrie A. Davis
    Sarah Djebali
    Alexander Dobin
    Brenton R. Graveley
    Sheng Li
    Christopher E. Mason
    Sara Olson
    Dmitri Pervouchine
    Cricket A. Sloan
    Xintao Wei
    Lijun Zhan
    Rafael A. Irizarry
    Genome Biology, 17
  • [6] Erratum to: A benchmark for RNA-seq quantification pipelines
    Mingxiang Teng
    Michael I. Love
    Carrie A. Davis
    Sarah Djebali
    Alexander Dobin
    Brenton R. Graveley
    Sheng Li
    Christopher E. Mason
    Sara Olson
    Dmitri Pervouchine
    Cricket A. Sloan
    Xintao Wei
    Lijun Zhan
    Rafael A. Irizarry
    Genome Biology, 17
  • [7] RNA-Seq UD: A bioinformatics plattform for RNA-Seq analysis
    Ramirez, Miguel
    Alejandro Rojas-Quintero, Cristian
    Enrique Vera-Parra, Nelson
    2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [8] Benchmark of lncRNA quantification in RNA-Seq of cancer samples
    Zheng, Hong
    Hernaez, Mikel
    Brennan, Kevin
    Gevaert, Olivier
    CANCER RESEARCH, 2018, 78 (13)
  • [9] Identifiability of isoform deconvolution from junction arrays and RNA-Seq
    Hiller, David
    Jiang, Hui
    Xu, Weihong
    Wong, Wing Hung
    BIOINFORMATICS, 2009, 25 (23) : 3056 - 3059
  • [10] RNA-Seq analysis in MeV
    Howe, Eleanor A.
    Sinha, Raktim
    Schlauch, Daniel
    Quackenbush, John
    BIOINFORMATICS, 2011, 27 (22) : 3209 - 3210