delN-EINSTEIN ALMOST CONTACT METRIC MANIFOLDS

被引:2
|
作者
Galaev, Sergei, V [1 ]
机构
[1] Natl Res Saratov State Univ, Phys & Math, Saratov, Russia
关键词
Almost contact metric manifold; interior connection; semimetric connection with skew-symmetric torsion; del(N)-Einstein manifold;
D O I
10.17223/19988621/70/1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
On an almost contact metric manifold M, an N-connection del(N) defined by the pair (del, N), where del is the interior metric connection and N: TM -> TM is an endomorphism of the tangent bundle of the manifold M such that N(xi)over-right-arrow = (0)over-right-arrow, N (D) subset of D , is considered. Special attention is paid to the case of a skew-symmetric N-connection del(N), which means that the torsion of an N-connection considered as a trivalent covariant tensor is skew-symmetric. Such a connection is uniquely defined and corresponds to the endomorphism N = 2 psi, where the endomorphism psi is defined by the equality omega(X,Y) = g(psi X ,Y) and is called in this work the second structure endomorphism of an almost contact metric manifold. The notion of a del(N)-Einstein almost contact metric manifold is introduced. For the case N = 2 psi, conditions under which almost contact manifolds are del(N)-Einstein manifolds are found.
引用
收藏
页码:5 / 15
页数:11
相关论文
共 50 条
  • [21] On ?-Einstein N (k)-Contact Metric Manifolds
    Yadav, Sunil Kumar
    Chen, Xiaomin
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [22] Einstein–Weyl structures on contact metric manifolds
    Amalendu Ghosh
    Annals of Global Analysis and Geometry, 2009, 35
  • [23] On Einstein-type contact metric manifolds
    Patra, Dhriti Sundar
    Ghosh, Amalendu
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 169
  • [24] On the m-quasi-Einstein almost contact manifolds
    Ghosh, Amalendu
    Patra, Dhriti Sundar
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2022, 101 (3-4): : 477 - 490
  • [25] ON A CLASS OF ALMOST CONTACT METRIC MANIFOLDS CONFORMALLY RELATED TO COSYMPLECTIC MANIFOLDS
    ALEXIEV, VA
    GANCHEV, GT
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1988, 41 (10): : 21 - 24
  • [26] Riemannian submersions from almost contact metric manifolds
    Ianus, S.
    Ionescu, A. M.
    Mocanu, R.
    Vilcu, G. E.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2011, 81 (01): : 101 - 114
  • [27] Riemannian submersions from almost contact metric manifolds
    S. Ianuş
    A. M. Ionescu
    R. Mocanu
    G. E. Vîlcu
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2011, 81 : 101 - 114
  • [28] HARMONICITY ON MAPS BETWEEN ALMOST CONTACT METRIC MANIFOLDS
    Chinea, D.
    ACTA MATHEMATICA HUNGARICA, 2010, 126 (04) : 352 - 365
  • [29] A class of almost contact metric manifolds and twisted products
    Falcitelli, Maria
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2012, 17 (01): : 17 - 29
  • [30] ON ALMOST PARA CONTACT METRIC MANIFOLDS - NIJENHUIS TENSOR
    KUSHWAHA, RDS
    YADAV, DK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1982, 13 (06): : 633 - 636