Boosting in Univariate Nonparametric Maximum Likelihood Estimation

被引:2
|
作者
Li, YunPeng [1 ]
Ye, ZhaoHui [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
关键词
Boosting; Kernel; Splines (mathematics); Smoothing methods; Mathematical model; Signal processing algorithms; Maximum likelihood estimation; kernel; nonparametric maximum likelihood estimation; second-order approximation; smoothing spline; PROBABILITY DENSITY-FUNCTION; CROSS-VALIDATION; REGULARIZATION; ALGORITHMS; MODEL;
D O I
10.1109/LSP.2021.3065881
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nonparametric maximum likelihood estimation is intended to infer the unknown density distribution while making as few assumptions as possible. To alleviate the over parameterization in nonparametric data fitting, smoothing assumptions are usually merged into the estimation. In this letter a novel boosting-based method is introduced to the nonparametric estimation in univariate cases. We deduce the boosting algorithm by the second-order approximation of nonparametric log-likelihood. Gaussian kernel and smooth spline are chosen as weak learners in boosting to satisfy the smoothing assumptions. Simulations and real data experiments demonstrate the efficacy of the proposed approach.
引用
收藏
页码:623 / 627
页数:5
相关论文
共 50 条
  • [41] Density estimation and nonparametric inferences using maximum likelihood weighted kernels
    Huang, Alan
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (03) : 561 - 571
  • [42] Nonparametric maximum-likelihood estimation of probability measures: existence and consistency
    Sagara, N
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 133 (02) : 249 - 271
  • [43] Constrained nonparametric maximum likelihood estimation of stochastically ordered survivor functions
    Park, Yongseok
    Kalbfleisch, John D.
    Taylor, Jeremy M. G.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2012, 40 (01): : 22 - 39
  • [44] NONPARAMETRIC MAXIMUM-LIKELIHOOD ESTIMATION FOR POPULATION PHARMACOKINETICS, WITH APPLICATION TO CYCLOSPORINE
    MALLET, A
    MENTRE, F
    STEIMER, JL
    LOKIEC, F
    [J]. JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1988, 16 (03): : 311 - 327
  • [45] ESTIMATION OF NONPARAMETRIC ORDINAL LOGISTIC REGRESSION MODEL USING LOCAL MAXIMUM LIKELIHOOD ESTIMATION
    Rifada, Marisa
    Chamidah, Nur
    Ratnasari, Vita
    Purhadi
    [J]. COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2021,
  • [46] Nonparametric maximum likelihood component separation
    Leloup, Clement
    Errard, Josquin
    Stompor, Radek
    [J]. PHYSICAL REVIEW D, 2023, 108 (12)
  • [47] Maximum likelihood estimators: Nonparametric approach
    Huber C.
    Solev V.N.
    Vonta I.
    [J]. Journal of Mathematical Sciences, 2007, 147 (4) : 6975 - 6979
  • [48] Nonparametric maximum likelihood estimation from samples with irrelevant data and verification bias
    Lambert, D
    Tierney, L
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) : 937 - 944
  • [49] Nonparametric Sieve Maximum Likelihood Estimation of Semi-Competing Risks Data
    Huang, Xifen
    Xu, Jinfeng
    [J]. MATHEMATICS, 2022, 10 (13)
  • [50] Improved nonparametric penalized maximum likelihood estimation for arbitrarily censored survival data
    Tubbs, Justin D.
    Chen, Lane G.
    Thuan-Quoc Thach
    Sham, Pak C.
    [J]. STATISTICS IN MEDICINE, 2022, 41 (20) : 4006 - 4021