Jacobi-PIA algorithm for bi-cubic B-spline interpolation surfaces

被引:0
|
作者
Liu, Chengzhi [1 ]
Li, Juncheng [1 ]
Hu, Lijuan [1 ]
机构
[1] Hunan Univ Humanities, Sch Math & Finance, Sci & Technol, Loudi, Peoples R China
关键词
Bi-cubic B-spline surface; Jacobi splitting; progressive iterative approximation; spectral radius; interpolation; PROGRESSIVE ITERATIVE APPROXIMATION;
D O I
10.1016/j.gmod.2022.101134
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Based on the Jacobi splitting of collocation matrices, we in this paper exploited the Jacobi-PIA format for bicubic B-spline surfaces. We first present the Jacobi-PIA scheme in term of matrix product, which has higher computational efficiency than that in term of matrix-vector product. To analyze the convergence of Jacobi-PIA, we transform the matrix product iterative scheme into the equivalent matrix-vector product scheme by using the properties of the Kronecker product. We showed that with the optimal relaxation factor, the Jacobi-PIA format for bi-cubic B-spline surface converges to the interpolation surface. Numerical results also demonstrated the effectiveness of the proposed method.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Jacobi–PIA algorithm for bi-cubic B-spline interpolation surfaces
    Liu, Chengzhi
    Li, Juncheng
    Hu, Lijuan
    [J]. Graphical Models, 2022, 120
  • [2] GS-PIA Algorithm for Bi-cubic B-spline Interpolation Surfaces
    Xiang, Yuchen
    Liu, Chengzhi
    [J]. IAENG International Journal of Applied Mathematics, 2024, 54 (06) : 1157 - 1162
  • [3] Modification algorithm of Cubic B-spline curve interpolation
    Zhang, Wan-Jun
    Gao, Shan-Ping
    Zhang, Su-Jia
    Zhang, Feng
    [J]. PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND INFORMATION TECHNOLOGY APPLICATIONS, 2016, 71 : 507 - 512
  • [4] Cubic B-Spline Interpolation and Realization
    Wang, Zhijiang
    Wang, Kaili
    An, Shujiang
    [J]. INFORMATION COMPUTING AND APPLICATIONS, PT I, 2011, 243 : 82 - 89
  • [5] MODIFIED CUBIC B-SPLINE INTERPOLATION
    HSI, P
    LEE, CH
    [J]. PROCEEDINGS OF THE IEEE, 1981, 69 (12) : 1590 - 1592
  • [6] AN EFFICIENT ALGORITHM FOR GENERATING B-SPLINE INTERPOLATION CURVES AND SURFACES FROM B-SPLINE APPROXIMATIONS
    WANG, HP
    HEWGILL, DE
    VICKERS, GW
    [J]. COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1990, 6 (05): : 395 - 400
  • [7] Cubic spline interpolation with quasiminimal B-spline coefficients
    László, L
    [J]. ACTA MATHEMATICA HUNGARICA, 2005, 107 (1-2) : 77 - 87
  • [8] Cubic spline interpolation with quasiminimal B-spline coefficients
    Lajos László
    [J]. Acta Mathematica Hungarica, 2005, 107 : 77 - 87
  • [9] Monotonicity-preserving rational bi-cubic spline surface interpolation
    Abbas, Muhammad
    Abd Majid, Ahmad
    Awang, Mohd Nain Hj
    Ali, Jamaludin Md
    [J]. SCIENCEASIA, 2014, 40 : 22 - 30
  • [10] INTERPOLATION WITH HYBRID B-SPLINE SURFACES
    WALKER, M
    [J]. COMPUTERS & GRAPHICS, 1994, 18 (04) : 525 - 530