Bacterial responses to neutrophil phagocytosis

被引:17
|
作者
Rosen, H [1 ]
机构
[1] Univ Washington, Dept Med, Seattle, WA 98195 USA
关键词
phagocyte; phagocytosis; macrophage; bacterial interaction; pathogen; neutrophil; granulocyte; type III secretion; type IV secretion;
D O I
10.1097/00062752-200401000-00002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of review This review focuses on adaptive bacterial interactions with neutrophils, emphasizing information communicated within the past year about bacterial factors that respond to contact with or phagocytosis by PMN. Recent findings Since the discovery of type III and IV secretion, progress in the analysis of bacterial interactions with host phagocytes has been extensive but largely focused on the macrophage. The remarkable growth of information about bacterial subversion of macrophage metabolism has been summarized in several excellent reviews. The scope of progress on neutrophil-bacteria interactions is more limited and dominated by recent studies of the granulocyte pathogen, Anaplasma phagocytophilum, the agent of granulocytic ehrlichiosis. Summary For many pathogens, contact with or ingestion by phagocytes elicits a vigorous but varied microbial response. The response repertoire includes activation of type III and type IV secretion systems that inject effector molecules into the host cell. Effectors modify host cell signaling and metabolic pathways to favor survival of the microbe. Whereas microbial secretory structures are few in kind and relatively conserved, effector molecules are numerous and variable. Effectors may promote phagocytosis by nonphagocytic cells or suppress phagocytosis by macrophages and neutrophils. They may suppress assembly or misdirect localization of the phagocyte NADPH oxidase that is responsible for generating toxic oxidants, and they may suppress phagosome-lysosome fusion. Phagocytosed bacteria may also up-regulate the expression of defensive proteins that attenuate the effects of phagocyte-derived antimicrobial toxins. These pathogenic stratagems probably have their origins in the competition among single-celled organisms, eukaryotes versus prokaryotes, that arose early in evolution.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [21] Neutrophil microbicidal activity: Screening bacterial mutants for survival after phagocytosis using quantitative PCR
    Rosen, H
    Lewis, PJ
    Nitzel, CML
    JAPANESE JOURNAL OF INFECTIOUS DISEASES, 2004, 57 (05) : S19 - S21
  • [22] AN ACUTE ALCOHOL INTOXICATION COMBINED WITH BURN INJURY SUPPRESSES NEUTROPHIL PHAGOCYTOSIS AND INTRACELLULAR BACTERIAL CLEARANCE
    Li, X.
    Luck, M.
    Morris, N. L.
    Cannon, A. R.
    Kuprys, P. V.
    Choudhry, M. A.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2018, 42 : 104A - 104A
  • [23] Involvement of CD44 and the cytoskeletal linker protein ankyrin in human neutrophil bacterial phagocytosis
    Moffat, FL
    Han, T
    Li, ZM
    Peck, MD
    Falk, RE
    Spalding, PB
    Jy, WC
    Ahn, YS
    Chu, AJ
    Bourguignon, LYW
    JOURNAL OF CELLULAR PHYSIOLOGY, 1996, 168 (03) : 638 - 647
  • [24] Protective Role of Mincle in Bacterial Pneumonia by Regulation of Neutrophil Mediated Phagocytosis and Extracellular Trap Formation
    Sharma, Atul
    Steichen, Anthony L.
    Jondle, Christopher N.
    Mishra, Bibhuti B.
    Sharma, Jyotika
    JOURNAL OF INFECTIOUS DISEASES, 2014, 209 (11): : 1837 - 1846
  • [25] Bacterial inhibition of phagocytosis
    Ernst, JD
    CELLULAR MICROBIOLOGY, 2000, 2 (05) : 379 - 386
  • [26] Bacterial avoidance of phagocytosis
    Celli, J
    Finlay, BB
    TRENDS IN MICROBIOLOGY, 2002, 10 (05) : 232 - 237
  • [27] Phagocytosis of bacterial pathogens
    Chung, Yoon-Suk Alexander
    Kocks, Christine
    FLY, 2012, 6 (01) : 21 - 25
  • [28] NEUTROPHIL CHEMOTAXIS AND PHAGOCYTOSIS IN JUVENILE PERIODONTITIS
    ELLEGAARD, B
    BORREGAARD, N
    ELLEGAARD, J
    JOURNAL OF PERIODONTAL RESEARCH, 1984, 19 (03) : 261 - 268
  • [29] EFFECT OF STAGE OF MATURITY ON NEUTROPHIL PHAGOCYTOSIS
    GUIDRY, AJ
    PAAPE, MJ
    JOURNAL OF DAIRY SCIENCE, 1975, 58 (08) : 1243 - 1243
  • [30] Modulation of neutrophil phagocytosis by the food dyes
    Titova, N.
    ALLERGY, 2011, 66 : 403 - 404