Micromachined 2-D scanner for 3-D optical coherence tomography

被引:65
|
作者
Yeow, JTW
Yang, VXD
Chahwan, A
Gordon, ML
Qi, B
Vitkin, IA
Wilson, BC
Goldenberg, AA
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Robot & Automat Lab, Toronto, ON, Canada
[2] Princess Margaret Hosp, Univ Hlth Network, Ontario Canc Inst, Toronto, ON, Canada
[3] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
[4] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会; 加拿大健康研究院;
关键词
MEMS; micromachined; optical scanner; optical coherence tomography; endoscope;
D O I
10.1016/j.sna.2004.06.021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the inherent advantages of micromachining technologies such as small size, small mass, low cost, low power consumption and high reliability, there will be radical changes to biomedical devices and how clinical diagnoses are made. One of the most promising applications of microtechnologies is in the field of medical science. This paper presents a potentially low voltage high electrostatic torque micromachined mirror capable of two-dimensional (2-D) scans (simultaneous transverse and longitudinal scans) for optical coherence tomographic imaging. When the micro-mirror is integrated with an optical coherence tomography (OCT) system, three-dimensional (3-D) sample images can be obtained in one longitudinal scan period. 3-D images of internal-organs of fruit fly (Drosophila melanogaster) and its larva are acquired using the micromachined-based OCT system. The dimension of the micromachined mirror is 1000 um x 1000 um. The entire MEMS scanner is made of single-silicon crystal, to act as mechanical reinforcement counteracting the inherent stresses of the deposited thin films on the mirror. The scanning mirror is actuated electrostatically. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:331 / 340
页数:10
相关论文
共 50 条
  • [21] 3-D to 2-D recognition with regions
    Jacobs, DW
    Basri, R
    1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, : 547 - 553
  • [22] 2-D and 3-D endoluminal ultrasound
    Liu, JB
    Goldberg, BB
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2000, 26 : S137 - S139
  • [23] 2-D/3-D switchable displays
    Willemsen, O. H.
    De Zwart, S. T.
    Hiddink, M. G. H.
    Willemsen, Oscar
    JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY, 2006, 14 (08) : 715 - 722
  • [24] Colour perception in 2-D and 3-D
    Hedrich, M.
    Bloj, M.
    Ruppertsberg, A.
    PERCEPTION, 2007, 36 : 193 - 193
  • [25] 2-D PHYSICS AND 3-D TOPOLOGY
    CRANE, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (03) : 615 - 640
  • [26] External optical probing of 2-D and 3-D photonic crystals.
    van Driel, HM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U246 - U246
  • [27] 3-D compressed sensing optical coherence tomography using predictive coding
    McLean, James P.
    Hendon, Christine P.
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (04): : 2531 - 2549
  • [28] 2-D and 3-D interpretation of electrical tomography measurements, Part 2: The inverse problem
    Lesur, V
    Cuer, M
    Straub, A
    GEOPHYSICS, 1999, 64 (02) : 396 - 402
  • [29] 2-D and 3-D interpretation of electrical tomography measurements, part 2: The inverse problem
    Lesur, Vincent
    Cuer, Michel
    Straub, André
    Geophysics, 64 (02): : 396 - 402
  • [30] Comparison of performances of electrical impedance tomography evaluated with 2-D and 3-D models
    Chateaux, Jean-Francois
    Nadi, Mustapha
    IEEE Transactions on Microwave Theory and Techniques, 2000, 48 (11 I) : 1874 - 1878