Kernelization Using Structural Parameters on Sparse Graph Classes

被引:0
|
作者
Gajarsky, Jakub [1 ]
Hlineny, Petr [1 ]
Obdrzalek, Jan [1 ]
Ordyniak, Sebastian [1 ]
Reidl, Felix [2 ]
Rossmanith, Peter [2 ]
Villaamil, Fernando Sanchez [2 ]
Sikdar, Somnath [2 ]
机构
[1] Masaryk Univ, Fac Informat, Brno, Czech Republic
[2] Rhein Westfal TH Aachen, Dept Comp Sci, Theoret Comp Sci, Aachen, Germany
来源
ALGORITHMS - ESA 2013 | 2013年 / 8125卷
关键词
ALGORITHMS; KERNELS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Meta-theorems for polynomial (linear) kernels have been the subject of intensive research in parameterized complexity. Heretofore, there were meta-theorems for linear kernels on graphs of bounded genus, H-minor-free graphs, and H-topological-minor-free graphs. To the best of our knowledge, there are no known meta-theorems for kernels for any of the larger sparse graph classes: graphs of bounded expansion, locally bounded expansion, and nowhere dense graphs. In this paper we prove meta-theorems for these three graph classes. More specifically, we show that graph problems that have finite integer index (FII) admit linear kernels on hereditary graphs of bounded expansion when parameterized by the size of a modulator to constant-treedepth graphs. For hereditary graph classes of locally bounded expansion, our result yields a quadratic kernel and for hereditary nowhere dense graphs, a polynomial kernel. While our parameter may seem rather strong, a linear kernel result on graphs of bounded expansion with a weaker parameter would for some problems violate known lower bounds. Moreover, we use a relaxed notion of FII which allows us to prove linear kernels for problems such as Longest Path/Cycle and Exact s, t-Path which do not have FII in general graphs.
引用
收藏
页码:529 / 540
页数:12
相关论文
共 50 条
  • [41] Structural Interpretation of Sparse Fault Data Using Graph Theory and Geological RulesFault Data Interpretation
    G. Godefroy
    G. Caumon
    G. Laurent
    F. Bonneau
    Mathematical Geosciences, 2019, 51 : 1091 - 1107
  • [42] Learning Mixtures of Sparse Linear Regressions Using Sparse Graph Codes
    Yin, Dong
    Pedarsani, Ramtin
    Chen, Yudong
    Ramchandran, Kannan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (03) : 1430 - 1451
  • [43] Learning Mixtures of Sparse Linear Regressions Using Sparse Graph Codes
    Yin, Dong
    Pedarsani, Ramtin
    Chen, Yudong
    Ramchandran, Kannan
    2017 55TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2017, : 588 - 595
  • [44] Estimating Graph Parameters Using Graph Grammars
    Mukherjee, Sourav
    Oates, Tim
    GRAMMATICAL INFERENCE: ALGORITHMS AND APPLICATIONS, PROCEEDINGS, 2008, 5278 : 292 - 294
  • [45] Exploiting c-closure in kernelization algorithms for graph problems
    Koana, Tomohiro
    Komusiewicz, Christian
    Sommer, Frank
    Leibniz International Proceedings in Informatics, LIPIcs, 2020, 173
  • [46] Structural decompositions, width parameters, and graph labelings
    Kratochvíl, J
    Proskurowski, A
    Serra, O
    DISCRETE APPLIED MATHEMATICS, 2005, 145 (02) : 141 - 142
  • [47] EXPLOITING c-CLOSURE IN KERNELIZATION ALGORITHMS FOR GRAPH PROBLEMS*
    Koana, Tomohiro
    Komusiewicz, Christian
    Sommer, Frank
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (04) : 2798 - 2821
  • [48] Structural Interpretation of Sparse Fault Data Using Graph Theory and Geological Rules Fault Data Interpretation
    Godefroy, G.
    Caumon, G.
    Laurent, G.
    Bonneau, F.
    MATHEMATICAL GEOSCIENCES, 2019, 51 (08) : 1091 - 1107
  • [49] Estimation of Sparse Structural Parameters with Many Endogenous Variables
    Shi, Zhentao
    ECONOMETRIC REVIEWS, 2016, 35 (8-10) : 1582 - 1608
  • [50] On some L(2, 1)-coloring parameters of certain graph classes
    Anjali, G.
    Sudev, N. K.
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2019, 11 (02) : 184 - 205