Indivisibility of divisor class numbers of Kummer extensions over the rational function field

被引:5
|
作者
Lee, Yoonjin [1 ]
Yoo, Jinjoo [1 ]
机构
[1] Ewha Womans Univ, Dept Math, 52 Ewhayeodae Gil, Seoul 03760, South Korea
基金
新加坡国家研究基金会;
关键词
Kummer extension; Class number; Cyclotomic function field; Global function field; CYCLIC FUNCTION-FIELDS;
D O I
10.1016/j.jnt.2018.04.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find a complete criterion for a Kummer extension K over the rational function field k = F-q(T) of degree l to have indivisibility of its divisor class number h(K) by l, where F-q is the finite field of order q and l is a prime divisor of q - 1. More importantly, when h(K) is not divisible by l, we have h(K) (math) 1 (mod l). In fact, the indivisibility of h(K) bye depends on the number of finite primes ramified in K/k and whether or not the infinite prime of k is unramified in K. Using this criterion, we explicitly construct an infinite family of the maximal real cyclotomic function fields whose divisor class numbers are divisible by l. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:270 / 292
页数:23
相关论文
共 50 条
  • [21] The narrow class groups of the ℤ17- and ℤ19-extensions over the rational field
    Kuniaki Horie
    Mitsuko Horie
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2010, 80 : 47 - 57
  • [22] Artin–Schreier extensions of the rational function field
    Sunghan Bae
    Hwanyup Jung
    Pyung-Lyun Kang
    Mathematische Zeitschrift, 2014, 276 : 613 - 633
  • [23] DIVISOR CLASS GROUP OF A CONGRUENCE FUNCTION-FIELD
    STICHTENOTH, H
    ARCHIV DER MATHEMATIK, 1979, 32 (04) : 336 - 340
  • [24] THE p-PART OF DIVISOR CLASS NUMBERS FOR CYCLOTOMIC FUNCTION FIELDS
    Shiomi, Daisuke
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (03): : 715 - 723
  • [25] Curves over finite fields with many rational points obtained by ray class field extensions
    Auer, R
    ALGORITHMIC NUMBER THEORY, 2000, 1838 : 127 - 134
  • [26] Average value of the divisor class numbers of real cubic function fields
    Lee, Yoonjin
    Lee, Jungyun
    Yoo, Jinjoo
    OPEN MATHEMATICS, 2023, 21 (01):
  • [27] On the Unitriangular Groups over Rational Numbers Field
    Rui GAO
    Jun LIAO
    He Guo LIU
    Xing Zhong XU
    Acta Mathematica Sinica,English Series, 2022, (04) : 718 - 734
  • [28] On the Unitriangular Groups over Rational Numbers Field
    Gao, Rui
    Liao, Jun
    Liu, He Guo
    Xu, Xing Zhong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (04) : 718 - 734
  • [29] Special Relativity over the Field of Rational Numbers
    Madarasz, Judit X.
    Szekely, Gergely
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (05) : 1706 - 1718
  • [30] Special Relativity over the Field of Rational Numbers
    Judit X. Madarász
    Gergely Székely
    International Journal of Theoretical Physics, 2013, 52 : 1706 - 1718