Determining surface phase diagrams including anharmonic effects

被引:12
|
作者
Zhou, Yuanyuan [1 ]
Scheffler, Matthias [1 ]
Ghiringhelli, Luca M. [1 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
基金
欧盟地平线“2020”;
关键词
MONTE-CARLO-SIMULATION; CHEMICAL-VAPOR-DEPOSITION; LENNARD-JONES FLUID; AMORPHOUS-SILICON; FREE-ENERGY; AB-INITIO; J-WALKING; ENSEMBLE; EQUATION; STATE;
D O I
10.1103/PhysRevB.100.174106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a massively parallel replica-exchange grand-canonical sampling algorithm to simulate materials at realistic conditions, in particular surfaces and clusters in reactive atmospheres. Its purpose is to determine in an automated fashion equilibrium phase diagrams for a given potential-energy surface and for any observable sampled in the grand-canonical ensemble. The approach enables an unbiased sampling of the phase space and is embarrassingly parallel. It is demonstrated for a model of the Lennard-Jones system describing a surface in contact with a gas phase. Furthermore, the algorithm is applied to SiM clusters (M = 2, 4) in contact with an H-2 atmosphere, with all interactions described at the ab initio level, i.e., via density-functional theory, with the Perdew-Burke-Ernzerhof gradient-corrected exchange-correlation functional. We identify the most thermodynamically stable phases at finite T, p(H-2) conditions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Surface phase diagrams from nested sampling
    Yang, Mingrui
    Partay, Livia B.
    Wexler, Robert B.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (18) : 13862 - 13874
  • [22] SURFACE PHASE-DIAGRAMS OF AN AMORPHOUS FERROMAGNET WITH SURFACE CRYSTALLIZATION
    KANEYOSHI, T
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1991, 165 (02): : 549 - 554
  • [23] The effects of surface transition layers on the phase diagrams and the pyroelectric properties of ferroelectric thin films
    Oubelkacem, A.
    Esssaoudi, I.
    Ainane, A.
    Saber, M.
    Dujardin, F.
    Gonzalez, J.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (07): : 1723 - 1730
  • [25] CALCULATIONAL METHOD FOR DETERMINING THE PHASE BOUNDARY IN BINARY-SYSTEM PHASE DIAGRAMS.
    Wang Mingxian
    Lei Qiongzhi
    Jinshu Xuebao/Acta Metallurgica Sinica, 1982, 18 (05): : 627 - 630
  • [26] Systematic improvement of protein crystals by determining the supersolubility curves of phase diagrams
    Saridakis, E
    Chayen, NE
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 1218 - 1222
  • [27] Liquid-vapour phase diagrams of water in nanopores - Confinement vs. surface effects
    Brovchenko, I
    Geiger, A
    Oleinikova, A
    NEW KINDS OF PHASE TRANSITIONS: TRANSFORMATIONS IN DISORDERED SUBSTANCES, 2002, 81 : 367 - 380
  • [28] Surface phase diagrams of a random transverse Ising model
    A. Dakhama
    A. Fathi
    N. Benayad
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 21 : 393 - 400
  • [29] Phase diagrams and surface properties of modified water models
    Alejandre, J.
    Lynden-Bell, R. M.
    MOLECULAR PHYSICS, 2007, 105 (23-24) : 3029 - 3033
  • [30] Surface reconstruction phase diagrams for InAs, AlSb, and GaSb
    Bracker, AS
    Yang, MJ
    Bennett, BR
    Culbertson, JC
    Moore, WJ
    JOURNAL OF CRYSTAL GROWTH, 2000, 220 (04) : 384 - 392