Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map

被引:1
|
作者
de Oliveira, Juliano A. [1 ,2 ]
de Mendonca, Hans M. J. [2 ]
da Silva, Anderson A. A. [2 ]
Leonel, Edson D. [2 ]
机构
[1] Univ Estadual Paulista UNESP, Campus Sao Joao da Boa Vista, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
[2] Univ Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas, Dept Fis, Campus Rio Claro,Ave 24A,1515, BR-13506900 Rio Claro, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Gauss map; Bifurcations; Scaling law; Critical exponents; DYNAMICS;
D O I
10.1007/s13538-019-00706-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The convergence to the stationary state is described using scaling arguments at a fold and a period doubling bifurcation in a one-dimensional Gauss map. Two procedures are used: (i) a phenomenological investigation leading to a set of critical exponents defining the universality class of the bifurcation and; (ii) analytical investigation that transforms, near the stationary state, the difference equation into an ordinary differential equation that is easily solved. The novelty of the procedure comes from the fact that it is firstly applied to the Gauss map and critical exponents for the fold bifurcations are defined.
引用
收藏
页码:923 / 927
页数:5
相关论文
共 50 条