Rigidity of higher rank abelian cocycles with values in diffeomorphism groups

被引:6
|
作者
Katok, A. [1 ]
Nitica, V.
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] W Chester Univ, Dept Math, W Chester, PA 19383 USA
[3] Acad Romana, Inst Math, Bucharest 70700, Romania
关键词
rigidity; cocycle; cohomological equation; higher-rank abelian actions; diffeomorphism groups; partially hyperbolic diffeomorphism; Cartan actions;
D O I
10.1007/s10711-006-9116-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider cocycles over certain hyperbolic R-k actions, k >= 2, and show rigidity properties for cocycles with values in a Lie group or a diffeomorphism group, which are close to identity on a set of generators, and are sufficiently smooth. The actions we consider are Cartan actions of SL(n, R)/ Gamma or SL(n, C)/ Gamma, for n >= 3, and Gamma torsion free cocompact lattice. The results in this paper rely on a technique developed recently by D. Damjanovic and A. Katok.
引用
收藏
页码:109 / 131
页数:23
相关论文
共 50 条
  • [21] Local rigidity of higher rank homogeneous abelian actions: a complete solution via the geometric method
    Vinhage, Kurt
    Wang, Zhenqi Jenny
    GEOMETRIAE DEDICATA, 2019, 200 (01) : 385 - 439
  • [22] Local rigidity of higher rank homogeneous abelian actions: a complete solution via the geometric method
    Kurt Vinhage
    Zhenqi Jenny Wang
    Geometriae Dedicata, 2019, 200 : 385 - 439
  • [23] First order rigidity of non-uniform higher rank arithmetic groups
    Avni, Nir
    Lubotzky, Alexander
    Meiri, Chen
    INVENTIONES MATHEMATICAE, 2019, 217 (01) : 219 - 240
  • [24] First order rigidity of non-uniform higher rank arithmetic groups
    Nir Avni
    Alexander Lubotzky
    Chen Meiri
    Inventiones mathematicae, 2019, 217 : 219 - 240
  • [25] On the existence of cohomologous continuous cocycles for cocycles with values in some Lie groups
    Derrien, JM
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (03): : 291 - 300
  • [26] The Fried Average Entropy and Slow Entropy for Actions of Higher Rank Abelian Groups
    Anatole Katok
    Svetlana Katok
    Federico Rodriguez Hertz
    Geometric and Functional Analysis, 2014, 24 : 1204 - 1228
  • [27] The Fried Average Entropy and Slow Entropy for Actions of Higher Rank Abelian Groups
    Katok, Anatole
    Katok, Svetlana
    Hertz, Federico Rodriguez
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (04) : 1204 - 1228
  • [28] The number of subgroups of finite abelian p-groups of rank 4 and higher
    Chew, C. Y.
    Chin, A. Y. M.
    Lim, C. S.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (04) : 1538 - 1547
  • [29] HYPERBOLIC RIGIDITY OF HIGHER RANK LATTICES
    Haettel, Thomas
    Guirardel, Vincent
    Horbez, Camille
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (02): : 439 - 468
  • [30] Higher rank rigidity for Berwald spaces
    Wu, Weisheng
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (07) : 1991 - 2016