Conventional multipliers for homoclinic orbits

被引:10
|
作者
Afraimovich, V [1 ]
Liu, WS [1 ]
Young, T [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
关键词
D O I
10.1088/0951-7715/9/1/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce and describe conventional multipliers, a new characteristic of homoclinic orbits of saddle-node type periodic trajectories. We prove existence and smooth dependence of conventional multipliers on the initial point. We show that multipliers of periodic trajectories arising from the homoclinic ones as a result of the saddle-node bifurcation are close to the conventional multipliers. As an application we study behavior of a circle map inside the 'Arnold tongues'.
引用
收藏
页码:115 / 136
页数:22
相关论文
共 50 条
  • [21] Homoclinic orbits for Lagrangian systems
    Wu, SP
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1996, 17 (02) : 245 - 256
  • [22] SOLITARY WAVES AND HOMOCLINIC ORBITS
    BALMFORTH, NJ
    ANNUAL REVIEW OF FLUID MECHANICS, 1995, 27 : 335 - 373
  • [23] Homoclinic orbits of a Hamiltonian system
    Y. Ding
    M. Willem
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1999, 50 : 759 - 778
  • [24] HYPERBOLICITY AND THE CREATION OF HOMOCLINIC ORBITS
    PALIS, J
    TAKENS, F
    ANNALS OF MATHEMATICS, 1987, 125 (02) : 337 - 374
  • [25] Existence of optimal homoclinic orbits
    Hudon, N.
    Hoffner, K.
    Guay, M.
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 3829 - 3833
  • [26] GLOBAL ASPECTS OF HOMOCLINIC ORBITS
    KAHLERT, C
    AEU-ARCHIV FUR ELEKTRONIK UND UBERTRAGUNGSTECHNIK-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 1992, 46 (04): : 266 - 273
  • [27] Homoclinic Orbits in the Complex Domain
    Int J Bifurcations Chaos Appl Sci Eng, 2 (253):
  • [28] HOMOCLINIC ORBITS FOR LAGRANGIAN SYSTEMS
    Wu SHAOPING Departmentof Mathematics
    Chinese Annals of Mathematics, 1996, (02) : 245 - 256
  • [29] Continuation of homoclinic orbits in MATLAB
    Friedman, M
    Govaerts, W
    Kuznetsov, YA
    Sautois, B
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 1, PROCEEDINGS, 2005, 3514 : 263 - 270
  • [30] Homoclinic orbits for an unbounded superquadratic
    Wang, Jun
    Xu, Junxiang
    Zhang, Fubao
    Wang, Lei
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (04): : 411 - 435