Conventional multipliers for homoclinic orbits

被引:10
|
作者
Afraimovich, V [1 ]
Liu, WS [1 ]
Young, T [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
关键词
D O I
10.1088/0951-7715/9/1/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce and describe conventional multipliers, a new characteristic of homoclinic orbits of saddle-node type periodic trajectories. We prove existence and smooth dependence of conventional multipliers on the initial point. We show that multipliers of periodic trajectories arising from the homoclinic ones as a result of the saddle-node bifurcation are close to the conventional multipliers. As an application we study behavior of a circle map inside the 'Arnold tongues'.
引用
收藏
页码:115 / 136
页数:22
相关论文
共 50 条
  • [1] Multipliers of homoclinic orbits on surfaces and characteristics of associated invariant sets
    Afraimovich, VS
    Young, TR
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (03) : 691 - 704
  • [2] Random homoclinic orbits
    Random Comput Dyn, 1-2 (01):
  • [3] Homoclinic orbits and chaos in discretized perturbed NLS systems .1. Homoclinic orbits
    Li, Y
    McLaughlin, DW
    JOURNAL OF NONLINEAR SCIENCE, 1997, 7 (03) : 211 - 269
  • [4] BIFURCATION OF DEGENERATE HOMOCLINIC ORBITS
    Zeng Weiyao(Hunan Light industry College
    ANNALS OF DIFFERENTIAL EQUATIONS, 1996, (03) : 353 - 361
  • [5] Homoclinic orbits to parabolic points
    Casasayas, Josefina
    Fontich, Ernest
    Nunes, Ana
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1997, 4 (02): : 201 - 216
  • [6] Homoclinic orbits for an unbounded superquadratic
    Jun Wang
    Junxiang Xu
    Fubao Zhang
    Lei Wang
    Nonlinear Differential Equations and Applications NoDEA, 2010, 17 : 411 - 435
  • [7] Homoclinic orbits in the complex domain
    Lazutkin, VF
    Simo, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (02): : 253 - 274
  • [8] THE HOMOCLINIC ORBITS IN THE LIENARD PLANE
    DING, CM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 191 (01) : 26 - 39
  • [9] Homoclinic orbits to parabolic points
    Josefina Casasayas
    Ernest Fontich
    Ana Nunes
    Nonlinear Differential Equations and Applications NoDEA, 1997, 4 : 201 - 216
  • [10] Homoclinic orbits and dressing method
    Doktorov, E. V.
    Rothos, V. M.
    BILINEAR INTEGRABLE SYSTEMS: FROM CLASSICAL TO QUATUM, CONTINUOUS TO DISCRETE, 2006, 201 : 55 - +