On the Thermalization Hypothesis of Quantum States

被引:3
|
作者
Volovich, I. V. [1 ]
Inozemcev, O., V [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
ETH; eigenstate thermalization hypothesis; thermalization; equilibration; STATISTICAL-MECHANICS; CHAOS;
D O I
10.1134/S0081543821020255
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eigenstate thermalization hypothesis (ETH) is discussed. We note that one common formulation of the ETH does not necessarily imply thermalization of an observable of an isolated many-body quantum system. We show that to get thermalization, one has to postulate the canonical or microcanonical distribution in the ETH ansatz. More generally, any other average can be postulated in the generalized ETH ansatz, which leads to a corresponding equilibration condition.
引用
收藏
页码:268 / 278
页数:11
相关论文
共 50 条
  • [21] Violation of Eigenstate Thermalization Hypothesis in Quantum Field Theories with Higher-Form Symmetry
    Fukushima, Osamu
    Hamazaki, Ryusuke
    PHYSICAL REVIEW LETTERS, 2023, 131 (13)
  • [22] Recombination kinetics of InAs quantum dots:: Role of thermalization in dark states
    Gurioli, M
    Vinattieri, A
    Zamfirescu, M
    Colocci, M
    Sanguinetti, S
    Nötzel, R
    PHYSICAL REVIEW B, 2006, 73 (08)
  • [23] Eigenstate Correlations, the Eigenstate Thermalization Hypothesis, and Quantum Information Dynamics in Chaotic Many-Body Quantum Systems
    Hahn, Dominik
    Luitz, David J.
    Chalker, J. T.
    PHYSICAL REVIEW X, 2024, 14 (03):
  • [24] Eigenstate Thermalization Hypothesis for Wigner Matrices
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (02) : 1005 - 1048
  • [25] Eigenstate Thermalization Hypothesis for Wigner Matrices
    Giorgio Cipolloni
    László Erdős
    Dominik Schröder
    Communications in Mathematical Physics, 2021, 388 : 1005 - 1048
  • [26] Eigenstate Thermalization Hypothesis and Free Probability
    Pappalardi, Silvia
    Foini, Laura
    Kurchan, Jorge
    PHYSICAL REVIEW LETTERS, 2022, 129 (17)
  • [27] CHAOS AND QUANTUM THERMALIZATION
    SREDNICKI, M
    PHYSICAL REVIEW E, 1994, 50 (02): : 888 - 901
  • [28] The gravity of quantum thermalization
    Brierley, Richard
    NATURE PHYSICS, 2023, 19 (11) : 1558 - 1558
  • [29] Asymmetric quantum hypothesis testing with Gaussian states
    Spedalieri, Gaetana
    Braunstein, Samuel L.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [30] Undecidability in quantum thermalization
    Shiraishi, Naoto
    Matsumoto, Keiji
    NATURE COMMUNICATIONS, 2021, 12 (01)