Generic representations and local langlands reciprocity law for p-adic SO2n+1

被引:0
|
作者
Jiang, DH [1 ]
Soudry, D [1 ]
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:457 / +
页数:3
相关论文
共 50 条
  • [1] The generic dual of p-adic split SO 2n and local langlands parameters
    Jantzen, Chris
    Liu, Baiying
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 204 (01) : 199 - 260
  • [2] The generic dual of p-adic split SO2n and local langlands parameters
    Chris Jantzen
    Baiying Liu
    Israel Journal of Mathematics, 2014, 204 : 199 - 260
  • [3] A LOCAL LANGLANDS PARAMETERIZATION FOR GENERIC SUPERCUSPIDAL REPRESENTATIONS OF p-ADIC G2
    Harris, Michael
    Khare, Chandrashekhar B.
    Thorne, Jack A.
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (01): : 257 - 286
  • [4] Genericity of Representations of p-Adic Sp2n and Local Langlands Parameters
    Liu, Baiying
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (05): : 1107 - 1136
  • [5] Patching and the p-adic local Langlands correspondence
    Caraiani, Ana
    Emerton, Matthew
    Gee, Toby
    Geraghty, David
    Paskunas, Vytautas
    Shin, Sug Woo
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2016, 4 (02) : 197 - 287
  • [6] The local Langlands conjecture for GL(n) over a p-adic field, n<p
    Michael Harris
    Inventiones mathematicae, 1998, 134 : 177 - 210
  • [7] The p-adic local Langlands correspondence for GL(2)(Q(p))
    Colmez, Pierre
    Dospinescu, Gabriel
    Paskunas, Vytautas
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2014, 2 (01) : 1 - 47
  • [8] Local p-adic Langlands correspondence and Kisin rings
    Colmez, Pierre
    Dospinescu, Gabriel
    Niziol, Wieslawa
    ACTA ARITHMETICA, 2023, 208 (02) : 101 - 126
  • [9] CORRESPONDENCE OF LANGLANDS LOCAL p-ADIC FOR GL2 (Qp)
    Berger, Laurent
    ASTERISQUE, 2011, (339) : 157 - 180
  • [10] Distinguished Generic Representations of GL(n) over p-adic Fields
    Matringe, Nadir
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (01) : 74 - 95