A LOCAL LANGLANDS PARAMETERIZATION FOR GENERIC SUPERCUSPIDAL REPRESENTATIONS OF p-ADIC G2

被引:1
|
作者
Harris, Michael [1 ]
Khare, Chandrashekhar B. [2 ]
Thorne, Jack A. [3 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] UCLA, Dept Math, Los Angeles, CA USA
[3] Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge, England
基金
欧洲研究理事会; 美国国家科学基金会; 欧盟地平线“2020”;
关键词
GALOIS GROUP; G(2); FUNCTORIALITY; CONJECTURE; THEOREMS; MODULES;
D O I
10.24033/asens.2533
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
- We construct a Langlands parameterization of supercuspidal representations of G2 over a p-adic field. More precisely, for any finite extension K/Qp we will construct a bijection .Cg :A & DEG;g(G2, K)-> g & DEG;(G2, K) from the set of generic supercuspidal representations of G2(K) to the set of irreducible continuous homomorphisms p : WK > G2(C) with WK the Weil group of K. The construction of the map is simply a matter of assembling arguments that are already in the literature, together with a previously unpublished theorem of G. Savin on exceptional theta correspondences, included as an appendix. The proof that the map is a bijection is arithmetic in nature, and specifically uses automorphy lifting theorems. These can be applied thanks to a recent result of Hundley and Liu on automorphic descent from GL(7) to G2.
引用
收藏
页码:257 / 286
页数:32
相关论文
共 50 条
  • [1] Dichotomy for generic supercuspidal representations of G2
    Savin, Gordan
    Weissman, Martin H.
    COMPOSITIO MATHEMATICA, 2011, 147 (03) : 735 - 783
  • [2] Generic representations and local langlands reciprocity law for p-adic SO2n+1
    Jiang, DH
    Soudry, D
    CONTRIBUTIONS TO AUTOMORPHIC FORMS, GEOMETRY, AND NUMBER THEORY, 2004, : 457 - +
  • [3] The supercuspidal representations of p-adic classical groups
    Stevens, Shaun
    INVENTIONES MATHEMATICAE, 2008, 172 (02) : 289 - 352
  • [4] The supercuspidal representations of p-adic classical groups
    Shaun Stevens
    Inventiones mathematicae, 2008, 172 : 289 - 352
  • [5] Genericity of Representations of p-Adic Sp2n and Local Langlands Parameters
    Liu, Baiying
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (05): : 1107 - 1136
  • [6] Unicity of types for supercuspidal representations of p-adic SL2
    Latham, Peter
    JOURNAL OF NUMBER THEORY, 2016, 162 : 376 - 390
  • [7] The generic dual of p-adic split SO 2n and local langlands parameters
    Jantzen, Chris
    Liu, Baiying
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 204 (01) : 199 - 260
  • [8] The generic dual of p-adic split SO2n and local langlands parameters
    Chris Jantzen
    Baiying Liu
    Israel Journal of Mathematics, 2014, 204 : 199 - 260
  • [9] Patching and the p-adic local Langlands correspondence
    Caraiani, Ana
    Emerton, Matthew
    Gee, Toby
    Geraghty, David
    Paskunas, Vytautas
    Shin, Sug Woo
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2016, 4 (02) : 197 - 287
  • [10] The p-adic local Langlands correspondence for GL(2)(Q(p))
    Colmez, Pierre
    Dospinescu, Gabriel
    Paskunas, Vytautas
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2014, 2 (01) : 1 - 47