Strong solutions to the nonlinear heat equation in homogeneous Besov spaces

被引:9
|
作者
Miao, Changxing
Yuan, Baoquan
Zhang, Bo
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Henan Polytech Univ, Coll Math & Informat, Jiaozuo City 454000, Henan Province, Peoples R China
[3] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear heat equation; well-posedness; Littlewood-Paley trichotomy; Besov spaces;
D O I
10.1016/j.na.2006.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the Cauchy problem of the nonlinear heat equation in homogeneous Besov spaces B-p,r(s)(R-n) with s < 0.The nonlinear estimate is established by means of the Littlewood-Paley trichotomy and is used to prove the global well-posedness of solutions for small initial data in the homogeneous Besov space B-p,r(s) (R-n) with s = n/p - 2/b < 0. In particular, when r = infinity and the initial data phi satisfies that lambda 2/b phi(lambda x) = phi(x) for any lambda > 0, our result leads to the existence of global self-similar solutions to the problem. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1329 / 1343
页数:15
相关论文
共 50 条
  • [41] INHOMOGENEOUS BESOV AND TRIEBEL-LIZORKING SPACES ON SPACES OF HOMOGENEOUS TYPE
    In memory or Professor M. T. Cheng Yongsheng Han (Auburn University
    Approximation Theory and Its Applications, 1999, (03) : 37 - 65
  • [42] Tb Theorem for Besov Spaces over Spaces of Homogeneous Type and their Applications
    Han, Yanchang
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2008, 32 (04) : 641 - 660
  • [43] Heat kernels and Besov spaces on metric measure spaces
    Jun Cao
    Alexander Grigor’yan
    Journal d'Analyse Mathématique, 2022, 148 : 637 - 680
  • [44] Some Notes of Homogeneous Besov-Lorentz Spaces
    Lou, Zhenzhen
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [45] Realizations of homogeneous Besov and Lizorkin-Triebel spaces
    Bourdaud, Gerard
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (5-6) : 476 - 491
  • [46] SOLUTIONS OF QUASILINEAR WAVE EQUATION WITH STRONG AND NONLINEAR VISCOSITY
    Hwang, Jin-soo
    Nakagiri, Shin-ichi
    Tanabe, Hiroki
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (04) : 867 - 885
  • [47] Parabolic Besov Regularity for the Heat Equation
    Hugo Aimar
    Ivana Gómez
    Constructive Approximation, 2012, 36 : 145 - 159
  • [48] Beltrami Equation with Coefficient in Sobolev and Besov Spaces
    Cruz, Victor
    Mateu, Joan
    Orobitg, Joan
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (06): : 1217 - 1235
  • [49] Parabolic Besov Regularity for the Heat Equation
    Aimar, Hugo
    Gomez, Ivana
    CONSTRUCTIVE APPROXIMATION, 2012, 36 (01) : 145 - 159
  • [50] Existence of weak and strong solutions of an integrodifferential equation in Banach spaces
    M. Kanakaraj
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1998, 108 : 169 - 177