Strong solutions to the nonlinear heat equation in homogeneous Besov spaces

被引:9
|
作者
Miao, Changxing
Yuan, Baoquan
Zhang, Bo
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Henan Polytech Univ, Coll Math & Informat, Jiaozuo City 454000, Henan Province, Peoples R China
[3] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear heat equation; well-posedness; Littlewood-Paley trichotomy; Besov spaces;
D O I
10.1016/j.na.2006.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the Cauchy problem of the nonlinear heat equation in homogeneous Besov spaces B-p,r(s)(R-n) with s < 0.The nonlinear estimate is established by means of the Littlewood-Paley trichotomy and is used to prove the global well-posedness of solutions for small initial data in the homogeneous Besov space B-p,r(s) (R-n) with s = n/p - 2/b < 0. In particular, when r = infinity and the initial data phi satisfies that lambda 2/b phi(lambda x) = phi(x) for any lambda > 0, our result leads to the existence of global self-similar solutions to the problem. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1329 / 1343
页数:15
相关论文
共 50 条