Optimal bilinear control of an abstract Schrodinger equation

被引:42
|
作者
Ito, Kazufumi
Kunisch, Karl
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Karl Franzens Univ Graz, Inst Math & Sci Comp, A-8010 Graz, Austria
关键词
Schrodinger equation; C-0-groups; optimal control; optimality systems; monotone scheme;
D O I
10.1137/05064254X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Well-posedness of abstract quantum mechanical systems is considered and the existence of optimal control of such systems is proved. First order optimality systems are derived. Convergence of the monotone scheme for the solution of the optimality system is proved.
引用
收藏
页码:274 / 287
页数:14
相关论文
共 50 条
  • [21] Bilinear optimal control for a wave equation with viscous damping
    Lenhart, S
    Liang, M
    HOUSTON JOURNAL OF MATHEMATICS, 2000, 26 (03): : 575 - 595
  • [22] On the stability of the solution in an optimal control problem for a Schrodinger equation
    Subasi, Murat
    Durur, Hulya
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 521 - 526
  • [23] On the optimal control problem for Schrodinger equation with complex potential
    Yetiskin, Hakan
    Subasi, Murat
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (07) : 1896 - 1902
  • [24] EXACT CONTROLLABILITY IN PROJECTIONS OF THE BILINEAR SCHRODINGER EQUATION
    Caponigro, Marco
    Sigalotti, Mario
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (04) : 2901 - 2920
  • [25] OPTIMAL CONTROL FOR STOCHASTIC NONLINEAR SCHRODINGER EQUATION ON GRAPH
    Cui, Jianbo
    Liu, Shu
    Zhou, Haomin
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (04) : 2021 - 2042
  • [26] Generic Controllability Properties for the Bilinear Schrodinger Equation
    Mason, Paolo
    Sigalotti, Mario
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (04) : 685 - 706
  • [27] Optimal control of the Schrodinger equation with two or three levels
    Boscain, U
    Charlot, G
    Gauthier, JP
    NONLINEAR AND ADAPTIVE CONTROL, NCN4 2001, 2003, 281 : 33 - 43
  • [28] A Note on Optimal Control Problem Governed by Schrodinger Equation
    Kocak, Yusuf
    Celik, Ercan
    Aksoy, Nigar Yildirim
    OPEN PHYSICS, 2015, 13 (01): : 407 - 413
  • [29] Generic controllability properties for the bilinear Schrodinger equation
    Sigalotti, Mario
    Mason, Paolo
    Boscain, Ugo
    Chambrion, Thomas
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 3799 - 3804
  • [30] Bilinear boundary optimal control with final observation for the heat equation
    Dorville, Rene
    APPLICABLE ANALYSIS, 2021,