In this paper we introduce first-order spatial random coefficient non-negative integer-valued autoregressive (SRCINAR(1,1)) model to fit the spatial count data on a two-dimensional regular lattice. We use a thinning operator in order to define the processes. The mean, variance and autocorrelation function of the model are derived. Three methods (Yule-Walker, Conditional least squares and Conditional maximum likelihood) for the estimation of the parameters of the model are discussed and are compared with respect to the root mean squared error (RMSE), in a simulation study. Finally, SRCINAR(1,1) model is applied to a real data set of striga counts at the ICRISAT Sahelian Center near Niamey (Niger).
机构:
Univ Fed Rio Grande do Norte, Programa Posgrad Matemat Aplicada & Estat, Natal, RN, BrazilUniv Fed Rio Grande do Norte, Programa Posgrad Matemat Aplicada & Estat, Natal, RN, Brazil
Orozco, Daniel L. R.
Sales, Lucas O. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Norte, Programa Posgrad Matemat Aplicada & Estat, Natal, RN, BrazilUniv Fed Rio Grande do Norte, Programa Posgrad Matemat Aplicada & Estat, Natal, RN, Brazil
Sales, Lucas O. F.
Fernandez, Luz M. Z.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Norte, Dept Estat, Programa Posgrad Matemat Aplicada & Estat, Natal, RN, BrazilUniv Fed Rio Grande do Norte, Programa Posgrad Matemat Aplicada & Estat, Natal, RN, Brazil
Fernandez, Luz M. Z.
Pinho, Andre L. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Norte, Dept Estat, Programa Posgrad Matemat Aplicada & Estat, Natal, RN, BrazilUniv Fed Rio Grande do Norte, Programa Posgrad Matemat Aplicada & Estat, Natal, RN, Brazil