Evaluating statistical learning methods for cell type classification and feature selection using RNA-seq data

被引:0
|
作者
Chen, Hao [1 ]
机构
[1] Univ Tennessee, Hlth Sci Ctr, Dept Pharmacol, Memphis, TN 38106 USA
来源
BMC BIOINFORMATICS | 2014年 / 15卷
关键词
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
P26
引用
收藏
页数:1
相关论文
共 50 条
  • [31] Emerging deep learning methods for single-cell RNA-seq data analysis
    Jie Zheng
    Ke Wang
    Quantitative Biology, 2019, 7 (04) : 247 - 254
  • [32] Statistical analysis of RNA-seq data at scale
    Leek, Jeff T.
    GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 563 - 563
  • [33] Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering
    Wu, Zhijin
    Wu, Hao
    GENOME BIOLOGY, 2020, 21 (01)
  • [34] Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering
    Zhijin Wu
    Hao Wu
    Genome Biology, 21
  • [35] Accurate feature selection improves single-cell RNA-seq cell clustering
    Su, Kenong
    Yu, Tianwei
    Wu, Hao
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [36] scFSNN: a feature selection method based on neural network for single-cell RNA-seq data
    Peng, Minjiao
    Lin, Baoqin
    Zhang, Jun
    Zhou, Yan
    Lin, Bingqing
    BMC GENOMICS, 2024, 25 (01)
  • [37] scFSNN: a feature selection method based on neural network for single-cell RNA-seq data
    Minjiao Peng
    Baoqin Lin
    Jun Zhang
    Yan Zhou
    Bingqing Lin
    BMC Genomics, 25
  • [38] Using Supervised Learning Methods for Gene Selection in RNA-Seq Case-Control Studies
    Wenric, Stephane
    Shemirani, Ruhollah
    FRONTIERS IN GENETICS, 2018, 9
  • [39] Cell-type-aware analysis of RNA-seq data
    Jin, Chong
    Chen, Mengjie
    Lin, Dan-Yu
    Sun, Wei
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (04): : 253 - 261
  • [40] Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data
    Calgaro, Matteo
    Romualdi, Chiara
    Waldron, Levi
    Risso, Davide
    Vitulo, Nicola
    GENOME BIOLOGY, 2020, 21 (01)