3D bioprinting of engineered breast cancer constructs for personalized and targeted cancer therapy

被引:18
|
作者
Sharifi, Majid [1 ,2 ,3 ]
Bai, Qian [1 ]
Babadaei, Mohammad Mahdi Nejadi [4 ]
Chowdhury, Farhan [5 ]
Hassan, Mahbub [6 ]
Taghizadeh, Akbar [3 ]
Derakhshankhah, Hossein [7 ]
Khan, Suliman [1 ]
Hasan, Anwarul [8 ,9 ]
Falahati, Mojtaba [10 ]
机构
[1] Zhengzhou Univ, Dept Anesthesiol, Affiliated Hosp 2, Zhengzhou, Peoples R China
[2] Shahroud Univ Med Sci, Sch Med, Dept Tissue Engn, Shahroud, Iran
[3] Univ Tabriz, Fac Agr, Dept Anim Sci, Tabriz, Iran
[4] Islamic Azad Univ, Fac Biol Sci, Dept Mol Genet, North Tehran Branch, Tehran, Iran
[5] Southern Illinois Univ Carbondale, Dept Mech Engn & Energy Proc, Carbondale, IL 62901 USA
[6] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[7] Kermanshah Univ Med Sci, Pharmaceut Sci Res Ctr, Hlth Inst, Kermanshah 6714415153, Iran
[8] Qatar Univ, Dept Mech & Ind Engn, Coll Engn, Doha 2713, Qatar
[9] Qatar Univ, Biomed Res Ctr, Doha 2713, Qatar
[10] Islamic Azad Univ, Fac Adv Sci & Technol, Dept Nanotechnol, Tehran Med Sci, Tehran, Iran
基金
中国博士后科学基金;
关键词
3D bioprinting; Breast cancer; Stromal components; Tumor models; Polymeric and composite scaffolds; Drug screening; TUMOR MICROENVIRONMENT; MECHANICAL-PROPERTIES; EXTRACELLULAR-MATRIX; TISSUE STIFFNESS; CULTURE MODELS; LYSYL OXIDASE; CELL-CULTURE; SCAFFOLDS; BONE; DRUG;
D O I
10.1016/j.jconrel.2021.03.026
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The bioprinting technique with specialized tissue production allows the study of biological, physiological, and behavioral changes of cancerous and non-cancerous tissues in response to pharmacological compounds in personalized medicine. To this end, to evaluate the efficacy of anticancer drugs before entering the clinical setting, tissue engineered 3D scaffolds containing breast cancer and derived from the especially patient, similar to the original tissue architecture, can potentially be used. Despite recent advances in the manufacturing of 3D bioprinted breast cancer tissue (BCT), many studies still suffer from reproducibility primarily because of the uncertainty of the materials used in the scaffolds and lack of printing methods. In this review, we present an overview of the breast cancer environment to optimize personalized treatment by examining and identifying the physiological and biological factors that mimic BCT. We also surveyed the materials and techniques related to 3D bioprinting, i.e, 3D bioprinting systems, current strategies for fabrication of 3D bioprinting tissues, cell adhesion and migration in 3D bioprinted BCT, and 3D bioprinted breast cancer metastasis models. Finally, we emphasized on the prospective future applications of 3D bioprinted cancer models for rapid and accurate drug screening in breast cancer.
引用
收藏
页码:91 / 106
页数:16
相关论文
共 50 条
  • [31] Personalized Targeted Therapy for Lung Cancer
    Wu, Kehua
    House, Larry
    Liu, Wanqing
    Cho, William C. S.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (09) : 11471 - 11496
  • [32] Targeted nanotheranostics for personalized cancer therapy
    Diou, Odile
    Tsapis, Nicolas
    Fattal, Elias
    EXPERT OPINION ON DRUG DELIVERY, 2012, 9 (12) : 1475 - 1487
  • [33] Personalized Therapy in Breast Cancer
    Marme, Frederik
    Schneeweiss, Andreas
    ONKOLOGIE, 2012, 35 : 28 - 33
  • [34] Personalized 3D models for prostate cancer surgeryProstate cancer
    Maria Chiara Masone
    Nature Reviews Urology, 2025, 22 (1) : 4 - 4
  • [35] Personalized therapy for breast cancer
    De Abreu, F. B.
    Schwartz, G. N.
    Wells, W. A.
    Tsongalis, G. J.
    CLINICAL GENETICS, 2014, 86 (01) : 62 - 67
  • [36] Bioprinting Endothelial Cells With Alginate for 3D Tissue Constructs
    Khalil, Saif
    Sun, Wei
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2009, 131 (11):
  • [37] 3D Bioprinting of Biomimetic Skeletal Muscle Tissue Constructs
    Kim, J.
    Seol, Y.
    Ko, I.
    Yoo, J.
    Atala, A.
    Lee, S.
    TISSUE ENGINEERING PART A, 2017, 23 : S84 - S84
  • [38] Biocompatible Nanocellulose Hydrogels for 3D Bioprinting of Tissue Constructs
    Gatenholm, P.
    Mantas, A.
    Gonzalez, G. Toriz
    Haag, D.
    TISSUE ENGINEERING PART A, 2015, 21 : S224 - S224
  • [39] 3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study
    Zhou, Xuan
    Zhu, Wei
    Nowicki, Margaret
    Miao, Shida
    Cui, Haitao
    Holmes, Benjamin
    Glazer, Robert I.
    Zhang, Lijie Grace
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (44) : 30017 - 30026
  • [40] Patient-derived 3D bioprinting pan-cancer drug screening platform for personalized medicine
    Yang, Huiyu
    Zhang, Jiangang
    Shan, Ying
    Wang, Yanan
    Cao, Yaning
    Sun, Yuning
    Jin, Ying
    Pan, Lingya
    Ke, Chunhai
    Cui, Wei
    Yang, Mian
    Zhou, Bo
    Jia, Ziqi
    Cao, Heng
    Wang, Yu
    Ma, Wenbin
    Xu, Xiao
    Zhao, Hai-Tao
    Yang, Huayu
    Mao, Yilei
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)