Uranyl Peroxide Nanocage Assemblies for Solid-State Electrolytes

被引:7
|
作者
Hu, Jie [1 ,2 ]
Cai, Linkun [1 ,2 ]
Wang, Huihui [1 ,2 ]
Chen, Kun [1 ,2 ]
Yin, Panchao [1 ,2 ]
机构
[1] South China Univ Technol, Sch Mol Sci & Engn, South China Adv Inst Soft Matter Sci & Technol, Guangdong Prov Key Lab Funct & Intelligent Hybrid, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
uranyl peroxide nanocage; nanocomposites; microphase separation; solid-state electrolyte; molecular cluster; charge interaction; POLYMER ELECTROLYTES; CONDUCTIVITY RELAXATION; IONIC TRANSPORT; METAL; COMPOSITES; COMPLEXES; BATTERIES; DYNAMICS; CLUSTERS; MODEL;
D O I
10.1021/acsanm.1c00130
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hybrid nanocomposites of uranyl peroxide nanocages are assembled from the ionic interaction between anionic uranyl peroxide nanocage clusters (Li44K16[UO2(O-2)(OH)](60), U-60) and cationic surfactants. As a porous nanocapsule, one U-60 cluster can uptake as much as similar to 44 Li+ ions, serving as the Li+ storage and transportation center. The nanocomposites show enriched microphase-separated structures ranging from lamellar to hexagonal columnar structures depending on the geometries of introduced surfactants. The U-60 enriched phases serve as nanochannels for Li+ ion transportation. The Li+ conductivity of the nanocomposites exhibits a crossover at 295 K from the Vogel-Fulcher-Tammann temperature dependence law to Arrhenius law, suggesting different Li+ conducting mechanisms across the critical temperature (T-c) phase-transition temperature of the hybrid materials. The Li+ ions diffuse through dynamic segmental motion of the nanocomposites above Tc and through a typical hopping mechanism below Tc. The design of the nanocomposites offers approaches to decouple the ionic transportation and dynamics of surfactant chains and therefore paves a way to fabricate solid-state electrolytes with both high ion conductivities and promising mechanical strengths.
引用
收藏
页码:3597 / 3603
页数:7
相关论文
共 50 条
  • [31] Fillers for Solid-State Polymer Electrolytes: Highlight
    Jung, Srun
    Kim, Dae Won
    Lee, Sang Deuk
    Cheong, Minserk
    Nguyen, Dinh Quan
    Cho, Byung Won
    Kim, Hoon Silk
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2009, 30 (10) : 2355 - 2361
  • [32] Ionic liquids for solid-state electrolytes and electrosynthesis
    Neto, M. J.
    Leones, R.
    Sentanin, F.
    Esperanca, J. M. S. S.
    Medeiros, M. J.
    Pawlicka, A.
    Silva, M. M.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2014, 714 : 63 - 69
  • [33] Cyclopropylamine Magnesium Borohydrides as Solid-State Electrolytes
    Amdisen, Mads B.
    Lee, Young-Su
    Jensen, Torben R.
    INORGANIC CHEMISTRY, 2025, 64 (08) : 3696 - 3706
  • [34] Solid-State Electrolytes for Sodium Metal Batteries
    Li, Zhaopeng
    Liu, Pei
    Zhu, Kunjie
    Zhang, Zhaoyuan
    Si, Yuchang
    Wang, Yijing
    Jiao, Lifang
    ENERGY & FUELS, 2021, 35 (11) : 9063 - 9079
  • [35] Fabrications and properties of composite solid-state electrolytes
    Inada, T
    Takada, K
    Kajiyama, A
    Kouguchi, M
    Sasaki, H
    Kondo, S
    Watanabe, M
    Murayama, M
    Kanno, R
    SOLID STATE IONICS, 2003, 158 (3-4) : 275 - 280
  • [36] Solid-state Reactions of Barium Peroxide with Metals
    Grigor'eva, T. F.
    Barinova, A. P.
    Vorsina, I. A.
    Kryukova, G. N.
    Boldyrev, V. V.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 1998, 43 (10) : 1476 - 1480
  • [37] Editorial: Solid-state electrolytes and solid-state batteries for next-generation energy storage
    Nagai, Hiroki
    Song, Shufeng
    FUNCTIONAL MATERIALS LETTERS, 2021, 14 (03)
  • [38] Recent progress of thin solid-state electrolytes and applications for solid-state lithium pouch cells
    Guo, Zhihao
    Zhao, Huan
    Xiao, Yiyang
    Liang, Shiang
    Zhang, Xiaobao
    Wang, Ning
    Yang, Juanyu
    Huang, Xiaowei
    MATERIALS TODAY ENERGY, 2025, 48
  • [39] Structural engineering developments in sulfide solid-state electrolytes for lithium and sodium solid-state batteries
    Nafis, Mohammad Sufiyan
    Liang, Zhiming
    Lee, Sehee
    Ban, Chunmei
    NANO ENERGY, 2025, 133
  • [40] Solid-state electrolytes for solid-state lithium-sulfur batteries:Comparisons, advances and prospects
    Xin Liang
    Lulu Wang
    Xiaolong Wu
    Xuyong Feng
    Qiujie Wu
    Yi Sun
    Hongfa Xiang
    Jiazhao Wang
    Journal of Energy Chemistry, 2022, 73 (10) : 370 - 386