Uranyl Peroxide Nanocage Assemblies for Solid-State Electrolytes

被引:7
|
作者
Hu, Jie [1 ,2 ]
Cai, Linkun [1 ,2 ]
Wang, Huihui [1 ,2 ]
Chen, Kun [1 ,2 ]
Yin, Panchao [1 ,2 ]
机构
[1] South China Univ Technol, Sch Mol Sci & Engn, South China Adv Inst Soft Matter Sci & Technol, Guangdong Prov Key Lab Funct & Intelligent Hybrid, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
uranyl peroxide nanocage; nanocomposites; microphase separation; solid-state electrolyte; molecular cluster; charge interaction; POLYMER ELECTROLYTES; CONDUCTIVITY RELAXATION; IONIC TRANSPORT; METAL; COMPOSITES; COMPLEXES; BATTERIES; DYNAMICS; CLUSTERS; MODEL;
D O I
10.1021/acsanm.1c00130
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hybrid nanocomposites of uranyl peroxide nanocages are assembled from the ionic interaction between anionic uranyl peroxide nanocage clusters (Li44K16[UO2(O-2)(OH)](60), U-60) and cationic surfactants. As a porous nanocapsule, one U-60 cluster can uptake as much as similar to 44 Li+ ions, serving as the Li+ storage and transportation center. The nanocomposites show enriched microphase-separated structures ranging from lamellar to hexagonal columnar structures depending on the geometries of introduced surfactants. The U-60 enriched phases serve as nanochannels for Li+ ion transportation. The Li+ conductivity of the nanocomposites exhibits a crossover at 295 K from the Vogel-Fulcher-Tammann temperature dependence law to Arrhenius law, suggesting different Li+ conducting mechanisms across the critical temperature (T-c) phase-transition temperature of the hybrid materials. The Li+ ions diffuse through dynamic segmental motion of the nanocomposites above Tc and through a typical hopping mechanism below Tc. The design of the nanocomposites offers approaches to decouple the ionic transportation and dynamics of surfactant chains and therefore paves a way to fabricate solid-state electrolytes with both high ion conductivities and promising mechanical strengths.
引用
收藏
页码:3597 / 3603
页数:7
相关论文
共 50 条
  • [1] Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide
    Kirkegaard, Marie C.
    Miskowiec, Andrew
    Ambrogio, Michael W.
    Anderson, Brian B.
    [J]. INORGANIC CHEMISTRY, 2018, 57 (10) : 5711 - 5715
  • [2] SOLID ELECTROLYTES AND SOLID-STATE BATTERIES
    LIANG, CC
    [J]. CHEMTECH, 1983, 13 (05) : 303 - 305
  • [3] Solid Electrolytes and Solid-State Batteries
    Takada, Kazunori
    [J]. ELECTROCHEMICAL STORAGE MATERIALS: SUPPLY, PROCESSING, RECYCLING AND MODELLING (ESTORM2015), 2016, 1765
  • [4] Solid-State Transformation of Uranyl Peroxide Materials through High-Level Irradiation
    Fairley, Melissa
    Sigmon, Ginger E.
    Laverne, Jay A.
    [J]. INORGANIC CHEMISTRY, 2023, 62 (48) : 19780 - 19785
  • [5] Solid-State Dynamics of Uranyl Polyoxometalates
    Alam, Todd M.
    Liao, Zuolei
    Zakharov, Lev N.
    Nyman, May
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (27) : 8302 - 8307
  • [6] Recent development in the field of ceramics solid-state electrolytes: I—oxide ceramic solid-state electrolytes
    Sumana Kundu
    Alexander Kraytsberg
    Yair Ein-Eli
    [J]. Journal of Solid State Electrochemistry, 2022, 26 : 1809 - 1838
  • [7] PHOTODECOMPOSITION IN SOLID-STATE OF URANYL FORMATE MONOHYDRATE
    CLAUDEL, B
    FEVE, M
    PUAUX, JP
    SAUTEREAU, H
    [J]. JOURNAL OF PHOTOCHEMISTRY, 1976, 5 (02): : 189 - 190
  • [8] SOLID-STATE PHOTOCHEMISTRY OF URANYL FORMATE MONOHYDRATE
    CLAUDEL, B
    FEVE, M
    PUAUX, JP
    SAUTEREAU, H
    [J]. JOURNAL OF PHOTOCHEMISTRY, 1977, 7 (02): : 113 - 121
  • [9] Antiperovskite Electrolytes for Solid-State Batteries
    Xia, Wei
    Zhao, Yang
    Zhao, Feipeng
    Adair, Keegan
    Zhao, Ruo
    Li, Shuai
    Zou, Ruqiang
    Zhao, Yusheng
    Sun, Xueliang
    [J]. CHEMICAL REVIEWS, 2022, 122 (03) : 3763 - 3819
  • [10] Metal hydroborates as solid-state electrolytes
    Cerny, R.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C362 - C362