On Hadamard-Type Inequalities for Co-ordinated r-Convex Functions

被引:2
|
作者
Ekinci, Alper [1 ]
Akdemir, Ahmet Ocak [1 ]
Ozdemir, M. Emin [2 ]
机构
[1] Ibrahim Cecen Univ Agri, Fac Sci & Arts, Dept Math, TR-04100 Agri, Turkey
[2] Uludag Univ, Educ Fac, Dept Math Educ, Gorukle Campus, Bursa, Turkey
关键词
D O I
10.1063/1.4981766
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper we defined r-convexity on the co-ordinates and we established some Hadamard-Type inequalities.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] REFINEMENTS OF HERMITE-HADAMARD TYPE INEQUALITIES FOR DIFFERENTIABLE CO-ORDINATED CONVEX FUNCTIONS AND APPLICATIONS
    Hsu, Kai-Chen
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 133 - 157
  • [22] On the generalized Ostrowski type inequalities for co-ordinated convex functions
    Sarikaya, Mehmet Zeki
    [J]. FILOMAT, 2023, 37 (22) : 7351 - 7366
  • [23] On Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions
    Kara, Hasan
    Budak, Huseyin
    Kiris, Mehmet Eyup
    [J]. AIMS MATHEMATICS, 2020, 5 (05): : 4681 - 4701
  • [24] Weighted Ostrowski type inequalities for co-ordinated convex functions
    Budak, Huseyin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [25] On Some Hadamard-Type Inequalities for (r, m)-Convex Functions
    Ozdemir, M. Emin
    Set, Erhan
    Akdemir, Ahmet Ocak
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2014, 9 (01): : 388 - 401
  • [26] Weighted Ostrowski type inequalities for co-ordinated convex functions
    Hüseyin Budak
    [J]. Journal of Inequalities and Applications, 2022
  • [27] Hermite–Hadamard-type inequalities for geometrically r-convex functions in terms of Stolarsky’s mean with applications to means
    Muhammad Amer Latif
    [J]. Advances in Difference Equations, 2021
  • [28] HERMITE-HADAMARD TYPE INEQUALITIES FOR GEOMETRICALLY r-CONVEX FUNCTIONS
    Xi, Bo-Yan
    Qi, Feng
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2014, 51 (04) : 530 - 546
  • [29] Hadamard-type inequalities for generalized convex functions
    Bessenyei, M
    Páles, Z
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (03): : 379 - 392
  • [30] Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions
    Budak, Huseyin
    Kara, Hasan
    Ali, Muhammad Aamir
    Khan, Sundas
    Chu, Yuming
    [J]. OPEN MATHEMATICS, 2021, 19 (01): : 1081 - 1097