Tuning of model predictive engine controllers over transient drive cycles

被引:1
|
作者
Maass, Alejandro, I [1 ]
Manzie, Chris [1 ]
Shames, Iman [1 ]
Chin, Robert [1 ,2 ]
Nesic, Dragan [1 ]
Ulapane, Nalika [1 ]
Nakada, Hayato [3 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
[2] Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
[3] Toyota Motor Co Ltd, Adv Unit Management Syst Dev Div, Toyota, Aichi, Japan
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Gradient-free optimisation; model-based control; controller calibration; diesel engines; automotive control; MPC;
D O I
10.1016/j.ifacol.2020.12.923
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A framework for tuning the parameters of model predictive controllers (MPCs) based on gradient-free optimisation (GFO) is proposed. Efficient calibration of MPCs is often a difficult task given the large number of tuning parameters and their non-intuitive correlation with the output response. We propose an efficient and systematic framework for the tuning of MPC parameters that can be implemented iteratively within the closed-loop setting. The performance of the proposed GFO-based algorithm is evaluated through its application to air-path control for diesel engines over simulations and experiments. We illustrate that the tuned parameters provide satisfactory tracking of reference trajectories over engine drive cycles with only a few iterations. Thereby, we extend existing MPC tuning approaches that calibrate parameters using step responses on the fuel rate and engine speed onto tuning over a full drive cycle response. Copyright (C) 2020 The Authors.
引用
下载
收藏
页码:14022 / 14027
页数:6
相关论文
共 50 条
  • [11] Tuning of multivariable model predictive controllers through expert bandit feedback
    Ira, Alex S.
    Manzie, Chris
    Shames, Iman
    Chin, Robert
    Nesic, Dragan
    Nakada, Hayato
    Sano, Takeshi
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (10) : 2650 - 2658
  • [12] Re-parametrising Cost Matrices for Tuning Model Predictive Controllers
    Chin, Robert
    Rowe, Jonathan E.
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 2856 - 2863
  • [13] On-line tuning of model predictive controllers using fuzzy logic
    Ali, E
    Al-Ghazzawi, A
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2003, 81 (05): : 1041 - 1051
  • [14] Model predictive controllers over differentiated services packet networks
    Muradore, Riccardo, 1600, Springer Verlag (456):
  • [15] Model Based Predictive Peak Observer Method in Parameter Tuning of PI Controllers
    Sahin, E.
    Guzelkaya, M.
    Eksin, I.
    2013 XXIV INTERNATIONAL SYMPOSIUM ON INFORMATION, COMMUNICATION AND AUTOMATION TECHNOLOGIES (ICAT), 2013,
  • [16] Auto-tuning for Model Predictive Controllers in Patients with Type 1 Diabetes
    Sereno, Juan E.
    Rivadeneira, Pablo S.
    2018 ARGENTINE CONFERENCE ON AUTOMATIC CONTROL (AADECA), 2018,
  • [17] A tuning algorithm for model predictive controllers based on genetic algorithms and fuzzy decision making
    van der Lee, J. H.
    Svrcek, W. Y.
    Young, B. R.
    ISA TRANSACTIONS, 2008, 47 (01) : 53 - 59
  • [18] Heuristic on-line tuning for nonlinear model predictive controllers using fuzzy logic
    Ali, E
    JOURNAL OF PROCESS CONTROL, 2003, 13 (05) : 383 - 396
  • [19] Characterization and tuning of predictive SSOD-PI controllers
    Ruiz, Angel
    Jimenez, Jorge E.
    Sanchez, Jose
    Dormido, Sebastian
    2015 23RD MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2015, : 551 - 557
  • [20] A design of self-tuning predictive PID controllers
    Asano, M
    Yamamoto, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2001, E84A (07): : 1779 - 1783