Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system

被引:167
|
作者
Zhang, Yihan [1 ,2 ]
Qin, Wei [1 ]
Lu, Xiaochan [1 ]
Xu, Jason [2 ]
Huang, Haigen [2 ]
Bai, Haipeng [1 ]
Li, Song [1 ]
Lin, Shuo [1 ,2 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Sch Chem Biol & Biotechnol, Lab Chem Genom, Shenzhen 518055, Peoples R China
[2] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA 90095 USA
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
关键词
PRECISE; VARIANTS; RICE; GENE; DNA;
D O I
10.1038/s41467-017-00175-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precise genetic modifications in model animals are essential for biomedical research. Here, we report a programmable "base editing" system to induce precise base conversion with high efficiency in zebrafish. Using cytidine deaminase fused to Cas9 nickase, up to 28% of site-specific single-base mutations are achieved in multiple gene loci. In addition, an engineered Cas9-VQR variant with 5'-NGA PAM specificities is used to induce base conversion in zebrafish. This shows that Cas9 variants can be used to expand the utility of this technology. Collectively, the targeted base editing system represents a strategy for precise and effective genome editing in zebrafish.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System
    Lu, Yuming
    Zhu, Jian-Kang
    MOLECULAR PLANT, 2017, 10 (03) : 523 - 525
  • [22] Construction of Vectors for the Genome Editing of Saccharomyces Yeast Using CRISPR-Cas9 System
    A. G. Matveenko
    A. S. Mikhailichenko
    G. A. Zhouravleva
    Microbiology, 2024, 93 : 154 - 159
  • [23] CRISPR-Cas9 Mediated Genome Editing in Drosophila
    Peng, Ping
    Wang, Xia
    Shen, Da
    Sun, Jin
    Jia, Yu
    Xu, Rong-Gang
    Zhu, Li-Fei
    Ni, Jian-Quan
    BIO-PROTOCOL, 2019, 9 (02):
  • [24] CRISPR-Cas9 Genome Editing of Plasmodium knowlesi
    Mohring, Franziska
    Hart, Melissa N.
    Patel, Avnish
    Baker, David A.
    Moon, Robert W.
    BIO-PROTOCOL, 2020, 10 (04):
  • [25] Photoactivatable CRISPR-Cas9 for optogenetic genome editing
    Nihongaki, Yuta
    Kawano, Fuun
    Nakajima, Takahiro
    Sato, Moritoshi
    NATURE BIOTECHNOLOGY, 2015, 33 (07) : 755 - 760
  • [26] Construction of Vectors for the Genome Editing of Saccharomyces Yeast Using CRISPR-Cas9 System
    Matveenko, A. G.
    Mikhailichenko, A. S.
    Zhouravleva, G. A.
    MICROBIOLOGY, 2024, 93 (02) : 154 - 159
  • [27] Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system
    Gao, Shuliang
    Tong, Yangyang
    Wen, Zhiqiang
    Zhu, Li
    Ge, Mei
    Chen, Daijie
    Jiang, Yu
    Yang, Sheng
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2016, 43 (08) : 1085 - 1093
  • [28] Inducible in vivo genome editing with CRISPR-Cas9
    Lukas E Dow
    Jonathan Fisher
    Kevin P O'Rourke
    Ashlesha Muley
    Edward R Kastenhuber
    Geulah Livshits
    Darjus F Tschaharganeh
    Nicholas D Socci
    Scott W Lowe
    Nature Biotechnology, 2015, 33 : 390 - 394
  • [29] Inducible in vivo genome editing with CRISPR-Cas9
    Dow, Lukas E.
    Fisher, Jonathan
    O'Rourke, Kevin P.
    Muley, Ashlesha
    Kastenhuber, Edward R.
    Livshits, Geulah
    Tschaharganeh, Darjus F.
    Socci, Nicholas D.
    Lowe, Scott W.
    NATURE BIOTECHNOLOGY, 2015, 33 (04) : 390 - U98
  • [30] CRISPR-Cas9 Based Bacteriophage Genome Editing
    Zhang, Xueli
    Zhang, Chaohui
    Liang, Caijiao
    Li, Bizhou
    Meng, Fanmei
    Ai, Yuncan
    MICROBIOLOGY SPECTRUM, 2022, 10 (04):