A Chebyshev Spectral Collocation Method for Nonlinear Volterra Integral Equations with Vanishing Delays

被引:5
|
作者
Wang, Zhong-Qing [1 ]
Sheng, Chang-Tao [2 ]
Jia, Hong-Li [3 ]
Li, Dao [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[3] Donghua Univ, Dept Math, Shanghai 200063, Peoples R China
基金
中国国家自然科学基金;
关键词
Multistep Chebyshev-Gauss-Lobatto spectral collocation method; nonlinear Volterra integral equation; vanishing variable delay; FUNCTIONAL-DIFFERENTIAL EQUATIONS; INITIAL-VALUE PROBLEMS; INTEGRODIFFERENTIAL EQUATIONS; NUMERICAL-ANALYSIS; SUPERCONVERGENCE; MESHES;
D O I
10.4208/eajam.130416.071217a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multistep Chebyshev-Gauss-Lobatto spectral collocation method for nonlinear Volterra integral equations with vanishing delays is developed. The convergence of the hp-version of the method in supremum norm is proved. Numerical experiments show the efficiency of the method for equations with highly oscillating, steep gradient and non-smooth solutions.
引用
收藏
页码:233 / 260
页数:28
相关论文
共 50 条